...
首页> 外文期刊>Icarus: International Journal of Solar System Studies >Uncertainty quantification in continuous fragmentation airburst models
【24h】

Uncertainty quantification in continuous fragmentation airburst models

机译:连续碎片气体模型中的不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

As evidenced by the Chelyabinsk and Tunguska airburst events in Russia, decameter-scale Near-Earth Objects (NEOs) can pose a hazard to human life and infrastructure from the energy they deposit in the atmosphere as they break up. To understand the potential damage these small NEOs can cause on Earth's surface, it is imperative to be able to model their atmospheric entry quickly and accurately. Here we compare three semi analytical models of asteroid airbursts that differ in their descriptions of fragment separation and spreading. Each model can be calibrated to produce a good fit to the energy deposition curve inferred from Chelyabinsk observations, but in each case the implied initial meteoroid strength is different and when the calibrated models are upscaled to Tunguska, the results diverge. This introduces an inter-model uncertainty that compounds the large range of uncertain physical and model parameters that influence probabilistic hazard assessment. Uncertainty quantification of airburst energy deposition was performed for a theoretical impacting object with H-magnitude 27, assuming no prior knowledge of any other impactor or model parameter. Each of the three models produces a different distribution of airburst outcomes, however, the variation attributable to physical parameter uncertainty is far larger than the inter-model differences. To constrain the initial conditions of the Tunguska event, the same uncertainty quantification was performed for an H-magnitude 24 event. Among the scenarios consistent with Tunguska observations (5-10 km burst altitude, 10-60 degrees trajectory angle, 3-50 MT TNT total energy release) the most likely range of impact conditions was: radius of 25-75 m, mass of 1 x 10(8)-2.5 x 10(9) kg, initial velocity of 11.5-33 km/s, and angle of 25-60 degrees.
机译:俄罗斯的Chelyabinsk和Tunguska Airburst事件所证明,靠近地球对象(NeoS)可以从他们分手时从气氛中存放的能量对人类生命和基础设施构成危害。为了了解这些小型新损伤的潜在损害,可以在地球表面上引起,必须能够快速准确地模拟其大气进入。在这里,我们比较小行星危机的三个半分析模型,其在碎片分离和传播的描述中不同。可以校准每个模型以产生良好的能量沉积曲线,从Chelyabinsk观察中推断出来,但在每种情况下,隐含的初始菱形强度不同,当校准模型上升到Tunguska时,结果发散。这引述了模型间的不确定性,使得影响有可能影响概率危险评估的大范围的不确定物理和模型参数。假设没有先验知识的任何其他冲击器或模型参数,对具有H级27的理论抗冲击对象进行了不确定度量。这三种模型中的每一个都产生了不同的空袭结果分布,然而,归因于物理参数不确定性的变化远远大于模型间差异。为了约束Tunguska事件的初始条件,对H级24事件进行相同的不确定性量化。在与Tunguska观测的情况一致(5-10 km爆裂高度,10-60度轨迹角度,3-50 mt TNT总能量释放)最可能的影响条件范围是:半径为25-75米,质量为1 x 10(8)-2.5 x 10(9)kg,初始速度为11.5-33 km / s,和25-60度的角度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号