首页> 外文期刊>Icarus: International Journal of Solar System Studies >Streamer propagation in the atmosphere of Titan and other N-2:CH4 mixtures compared to N-2:O-2 mixtures
【24h】

Streamer propagation in the atmosphere of Titan and other N-2:CH4 mixtures compared to N-2:O-2 mixtures

机译:与N-2的大气和其他N-2:CH 4混合物的气氛中飘逸繁殖:O-2混合物

获取原文
获取原文并翻译 | 示例
       

摘要

Streamers, thin, ionized plasma channels, form the early stages of lightning discharges. Here we approach the study of extraterrestrial lightning by studying the formation and propagation of streamer discharges in various nitrogen-methane and nitrogen-oxygen mixtures with levels of nitrogen from 20% to 98.4%. We present the friction force and breakdown fields E-k in various N-2:O-2 (Earth-like) and N-2:CH4 (Titan-like) mixtures. The strength of the friction force is larger in N-2:CH4 mixtures whereas the breakdown field in mixtures with methane is half as large as in mixtures with oxygen. We use a 2.5 dimensional Monte Carlo particle-in-cell code with cylindrical symmetry to simulate the development of electron avalanches from an initial electron-ion patch in ambient electric fields between 1.5E(k) and 3E(k). We compare the electron density, the electric field, the front velocities as well as the occurrence of avalanche-to-streamer transition between mixtures with methane and with oxygen. Whereas we observe the formation of streamers in oxygen in all considered cases, we observe streamer inceptions in methane for small percentages of nitrogen or for large electric fields only. For large percentages of nitrogen or for small fields, ionization is not efficient enough to form a streamer channel within the length of the simulation domain. In oxygen, positive and negative streamers move faster for small percentages of nitrogen. In mixtures with methane, electron or streamer fronts move 10-100 times slower than in mixtures with oxygen; the higher the percentage of methane, the faster the fronts move. On Titan with methane percentages between 1.4% and 5%, a successful streamer inception would require a large electric field of 4.2 MV m(-1) (3E(k)). Such large fields might not be present and explain the non-detection of Titan lightning by the Cassini/Huygens mission.
机译:飘带,薄,电离等离子体通道,形成雷电排出的早期阶段。在这里,我们通过研究各种氮甲烷和氮氧混合物中的炉排排出的形成和传播来方法研究异物闪电,从20%〜98.4%的氮水平的絮凝剂排放的形成和传播。我们介绍了各种N-2:O-2(样地)和N-2:CH 4(泰坦状)混合物中的摩擦力和击穿领域E-K。摩擦力的强度在N-2:CH 4混合物中较大,而用甲烷混合物中的击穿场是与氧气混合物中的一半。我们使用具有圆柱对称的2.5尺寸的蒙特卡罗粒子粒子码,以模拟来自1.5e(k)和3e(k)之间的环境电场中的初始电子离子贴片的电子雪崩的开发。我们比较电子密度,电场,前速度以及用甲烷和氧气之间的混合物之间的雪崩飘逸转变的发生。然而,我们观察到氧气中的炉中的形成,在所有被认为的情况下,我们观察甲烷中的拖斯特·初始,仅用于小百分比的氮气或仅用于大电场。对于大百分比的氮气或小场,电离在模拟结构域的长度内不足以形成拖车通道。在氧气中,正坯料和负飘带的含量较快地移动。在与甲烷的混合物中,电子或炉子前部比用氧气混合物移动10-100倍;甲烷的百分比越高,前线移动越快。在硫烷百分比的甲烷百分比上为1.4%和5%,坯料成功将需要4.2 mV m(-1)(3e(k))的大电场。这些大领域可能不存在并解释了Cassini / Huygens Mission的泰坦闪电的未检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号