...
首页> 外文期刊>Agricultural Water Management >Soybean crop-water production functions in a humid region across years and soils determined with APEX model
【24h】

Soybean crop-water production functions in a humid region across years and soils determined with APEX model

机译:跨越多年和土壤中的大豆作物水资源生产功能在用顶点模型确定

获取原文
获取原文并翻译 | 示例
           

摘要

Crop production as a function of water use or water applied, called the crop water production function (CWPF), is a useful tool for irrigation planning, design and management. However, these functions are not only crop and variety specific they also vary with soil types and climatic conditions (locations). Derivation of multi-year average CWPFs through field experiments for different locations and soils is time-consuming and expensive, as it requires careful long-term and multi-location field experiments to obtain them. Process based crop system models provide a useful tool for determining CWPFs using short-term field experimental data for calibration and validation. The aim of this study was to determine soybean CWPFs using the Agricultural Policy/Environmental eXtender (APEX) model across three soil types (Vaiden-silty clay, Cahaba-sandy loam, and Demopolis-clay loam) and three weather conditions (14-year average from 2002 to 2015, dry, and wet) of a humid irrigated region in Mississippi, USA. The results showed that the relationship between simulated soybean grain yield (GY) and the seasonal crop evapotranspiration (ET) for each soil under 14-year average weather condition was linear. Compared with the Vaiden soil, the Cahaba and Demopolis soils had slightly higher water use efficiency (WUE) over 14-year average weather conditions. The CWPFs for GY vs supplemental irrigation were cubic polynomials for all soil types and weather conditions, with varying coefficients. The maximum values of irrigation water use efficiency (IWUEmax) derived from these cubic CWPFs varied from 2.58 to 9.89 kg ha(-1) mm r across soils and weather conditions. The irrigation amount during the growing season required (I-max) to achieve the maximum GY for soybean also had a wide range of values, from 110 to 405 mm. The IWUE and Imax were related to available water holding capacity of soils. The relationship between GY and total plant available water supply (TWS) was also a cubic function, with coefficients varying with soil types and climatic conditions. The yield response factor (Kr) was 1.24 (greater than 1.00) when averaged over 14 years' weather data, indicating that soybean was very sensitive to water stress even in a humid region like Mississippi. Thus, supplemental irrigation is necessary to increase GY and ensure stability in yields.
机译:作物产量作为水使用或水的函数,称为作物水资源生产功能(CWPF),是灌溉规划,设计和管理的有用工具。然而,这些功能不仅具有作物和品种的特定,它们也会因土壤类型和气候条件(地点)而异。通过不同地点和土壤的现场实验推导多年平均CWPFS是耗时和昂贵的,因为它需要仔细的长期和多位置现场实验来获得它们。基于过程的庄稼系统模型提供了一种使用用于校准和验证的短期场实验数据来确定CWPF的有用工具。本研究的目的是使用跨越三种土壤类型(Vaiden-Silty Clay,Cahaba-Sand Woam和Demopolis-Clay Loam)和三种天气状况(14年2002年至2015年的平均潮湿的地区2002年至2015年,在美国密西西比州的潮湿灌溉区域。结果表明,在14年期平均天气条件下,模拟大豆产量(GY)与每种土壤的季节性作物蒸散(ET)的关系是线性的。与屈光土壤相比,Cahaba和Demopolis土壤略高于14年内的水平效率略高(WUE)。 GY VS补充灌溉的CWPF是所有土壤类型和天气条件的立方多项式,具有不同的系数。从这些立方CWPF的灌溉用水效率(IWuemax)的最大值在土壤和天气条件下从2.58到9.89千克(-1)mm r不同。需要(I-Max)的生长季节期间的灌溉量(I-Max)为大豆的最大GY也有很多值,从110到405 mm。 IWUE和IMAX与土壤的可用水持有能力有关。 GY与植物总供水(TWS)之间的关系也是立方体功能,系数随土壤类型和气候条件而变化。当平均在14岁以上的天气数据平均时,产量响应因子(KR)为1.24(大于1.00),表明大豆对水分压力非常敏感,即使在密西西比等潮湿的区域中也是如此。因此,需要补充灌溉以增加GY并确保产量的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号