首页> 外文期刊>AIChE Journal >Modeling hydrodynamic cavitation in venturi: influence of venturi configuration on inception and extent of cavitation
【24h】

Modeling hydrodynamic cavitation in venturi: influence of venturi configuration on inception and extent of cavitation

机译:Venturi建模流体动力空化:文丘里配置对空化初始化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrodynamic cavitation (HC) is useful for intensifying a wide variety of industrial applications including biofuel production, emulsion preparation, and wastewater treatment. Venturi is one of the most widely used devices for HC. Despite the wide spread use, the role and interactions among various design and operating parameters on generated cavitation is not yet adequately understood. This article presents results of computational investigation into the cavitation characteristics of different venturi designs over a range of operating conditions. Influence of the key geometric parameters such as the length of venturi throat and diffuser angle on the inception and extent of cavitation is discussed quantitatively. Formulation and solution of multiphase computational fluid dynamics (CFD) models are presented. Appropriate turbulence and cavitation models are selected and solved using a commercial CFD code. Care was taken to eliminate the influence of numerical parameters like mesh density, discretization scheme, and convergence criteria. The computational model was validated by comparing simulated results with three published data sets. The simulated results in terms of velocity and pressure gradients, vapor volume fractions and turbulence quantities, and so on, are critically analyzed and discussed. Diffuser angle was found to have a significant influence on cavitation inception and evolution. The length of the venturi throat has relatively less impact on cavitation inception and evolution compared to the diffuser angle. The models and simulated flow field were used to simulate detailed time-pressure histories for individual vapor cavities, including turbulent fluctuations. This in turn can be used to simulate cavity collapse and overall performance of HC device as a reactor. The presented results offer useful guidance to the designer of HC devices, identifying key operating and design parameters that can be manipulated to achieve the desired level of cavitational activity. The presented approach and results also offer a useful means to compare and to evaluate different designs of cavitation devices and operating parameters. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 421-433, 2019
机译:流体动力空化(HC)可用于加强各种工业应用,包括生物燃料生产,乳液制备和废水处理。 Venturi是HC最广泛使用的设备之一。尽管使用广泛的应用,但尚未得到充分的理解,各种设计和操作参数之间的作用和相互作用。本文介绍了在一系列操作条件下对不同Venturi设计的计算调查的结果。定量讨论了关键几何参数诸如文丘里喉部长度和扩散角上的漫射角度的影响和空化程度。提出了多相计算流体动力学(CFD)模型的配方和解决方案。使用商业CFD码选择并解决了适当的湍流和空化模型。注意消除数值参数等啮道密度,离散化方案和收敛标准的影响。通过将模拟结果与三个发布的数据集进行比较来验证计算模型。速度和压力梯度,蒸汽体积分数和湍流量等的模拟结果受到严格分析和讨论的。发现扩散角对空化初始化和进化产生显着影响。与漫射角相比,文丘里喉部的长度对空化初始化和进化的影响相对较小。模型和模拟流场用于模拟各个蒸汽腔的详细时压历史,包括湍流波动。这又可以用于模拟HC器件作为反应堆的腔塌陷和整体性能。所呈现的结果为HC设备的设计者提供了有用的指导,识别可以操纵的关键操作和设计参数,以实现所需的空化活动水平。所提出的方法和结果还提供了一种有用的方法来比较和评估空化装置和操作参数的不同设计。 (c)2018年美国化学工程师Aiche J,65:421-433,2019

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号