...
首页> 外文期刊>ACS Synthetic Biology >Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination
【24h】

Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination

机译:通过脱氨基重新编程醋酸氨基菌靶向碱基编辑

获取原文
获取原文并翻译 | 示例
           

摘要

Acetogenic bacteria are rising in popularity as chassis microbes for biotechnology due to their capability of converting inorganic one-carbon (C1) gases to organic chemicals. To fully uncover the potential of acetogenic bacteria, synthetic biology tools are imperative to either engineer designed functions or to interrogate the physiology. Here, we report a genome-editing tool at a one-nucleotide resolution, namely base editing, for acetogenic bacteria based on CRISPR-targeted deamination. This tool combines nuclease deactivated Cas9 with activation-induced cytidine deaminase to enable cytosine-to-thymine substitution without DNA cleavage, homology-directed repair, and donor DNA, which are generally the bottlenecks for applying conventional CRISPR-Cas systems in bacteria. We designed and validated a modularized base-editing tool in the model acetogenic bacterium Clostridium ljungdahlii. The editing principles were investigated, and an in-silico analysis revealed the capability of base editing across the genome and the potential for off-target events. Moreover, genes related to acetate and ethanol production were disrupted individually by installing premature STOP codons to reprogram carbon flux toward improved acetate production. This resulted in engineered C ljungdahlii strains with the desired phenotypes and stable genotypes. Our base-editing tool promotes the application and research in acetogenic bacteria and provides a blueprint to upgrade CRISPR-Cas-based genome editing in bacteria in general.
机译:由于其能够将无机单碳(C1)气体转化为有机化学品,乙酰胆碱的细菌是作为生物技术的底盘微生物而上升。为了完全揭示乙酰醋酸的潜力,合成生物学工具必须对工程师设计的功能或询问生理学。在这里,我们以一种核苷酸分辨率,即基于CRISPR-靶向脱氨基氨基聚集的乙酰菌,以一种核苷酸分辨率,即基础编辑来报告基因组编辑工具。该工具将核酸酶停用Cas9与活化诱导的胞苷脱氨酶结合,以使得胞嘧啶与胸腺嘧啶的替代,使得没有DNA裂解,同源性的修复和供体DNA的胞嘧啶 - 胸腺嘧啶替代,这通常是用于在细菌中应用常规CRISPR-CAS系统的瓶颈。我们在模型乙酰霉菌梭菌Ljungdahlii设计和验证了模块化的基础编辑工具。研究了编辑原理,并且硅基分析显示了基因组的基础编辑的能力和偏离目标事件的潜力。此外,通过安装过早的止弓根重新编程碳通量朝向改善醋酸盐产生来单独破坏与乙酸酯和乙醇产生的基因。这导致具有所需表型和稳定基因型的工程化C Ljungdahlii菌株。我们的基础编辑工具促进了醋酸乙酰菌的应用和研究,并提供了一种蓝图,以升级基于CAS-CAS的基因组在细菌中的基因组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号