首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Techno-economic and Life-Cycle Assessment of One-Step Production of 1,3-Butadiene from Bioethanol Using Reaction Data under Industrial Operating Conditions
【24h】

Techno-economic and Life-Cycle Assessment of One-Step Production of 1,3-Butadiene from Bioethanol Using Reaction Data under Industrial Operating Conditions

机译:技术经济和生命周期评估1,3-丁二烯从生物乙醇中使用反应数据在工业运行条件下使用反应数据

获取原文
获取原文并翻译 | 示例
           

摘要

A process to produce 1,3-butadiene (1,3-BD) from ethanol in a one-step reaction with a Hf-Zn catalyst was designed using experimental data from the catalyst performance under industrial conditions, taking into account the presence of water and other byproducts in recycled ethanol. The techno-economic and life cycle assessments of the process were performed and compared to the naphtha-cracking route. In these assessments two scenarios were defined to evaluate the impact of catalyst selectivity to 1,3-BD (58 and 69%). For the assessment of the environmental sustainability, three further cases were defined to determine the influence of the geographical location of the production plant considering the world's major ethanol suppliers: The United States, Brazil, and Europe. The results of the economic evaluation show that for a plant with a production capacity of 200 ktonne/year of 1,3-BD, and considering an average market price of azeotropic ethanol (450 (sic)/m(3)), the minimum butadiene selling price for a 10% rate of return on investment ranges 1.13-1.26 times the average butadiene market price (1529 (sic)/tonne). The process can be profitable for favorable combinations of market prices of ethanol and 1,3-butadiene, but the profitability of the process ultimately relies on the development of higher selective catalysts to reduce the consumption of ethanol per tonne of 1,3-butadiene since ethanol dominates the production costs. The LCA shows that switching from naphtha-derived butadiene to biobutadiene can lead to substantial reductions in CO2 emissions (GWP100) (8-26%) but, in turn, to a significant increase in water consumption (62 to 137-fold) and cumulative energy demand (50-250%). Being that ethanol is the major contributor to all impact categories (65-98% of the impacts), the location of the plant and catalyst selectivity significantly affects the environmental sustainability of the process. Considering the three impact categories and the uncertainty analysis of the LCA results, the best plant location would be Brazil, with a negative median impact value for GWP100 (-73 to -52 kg CO2 eq/tonne 1,3-BD) and the lowest median value for water consumption (235-299 m(3)/tonne 1,3-BD) but the highest median value for cumulative energy demand (207-241 GJeq/tonne 1,3-BD), the latter due to the low ethanol yield of sugar cane.
机译:使用实验数据在工业条件下的催化剂性能下,使用实验数据在与HF-Zn催化剂中从乙醇中制备1,3-丁二烯(1,3-Bd)的方法。考虑到水的存在再生乙醇中的其他副产品。进行该过程的技术经济和生命周期评估,并与石脑油裂解途径进行比较。在这些评估中,定义了两种情况,以评估催化剂选择性对1,3-Bd(58和69%)的影响。为了评估环境可持续性,定义了三种进一步的案件,以确定考虑到世界各大的乙醇供应商的生产工厂的地理位置的影响:美国,巴西和欧洲。经济评估结果表明,对于生产能力为200 ktonne /年的1,3-BD的工厂,并考虑到共沸乙醇的平均市场价格(450(SiC)/ m(3)),最低限度丁二烯售价为10%的投资回报率为1.13-1.26倍的平均丁二烯市场价格(1529(SIC)/吨)。该过程可以盈利,可利用乙醇和1,3-丁二烯的市场价格的有利组合,但该过程的盈利能力最终依赖于更高选择性催化剂的发展,以减少每吨1,3-丁二烯的乙醇的消耗乙醇主导了生产成本。 LCA表明,从石脑油衍生的丁二烯转移到生物丁二烯可以导致二氧化碳排放量(GWP100)(8-26%)的实质性降低,但反过来又增加了耗水量(62至137倍)和累积的显着增加能源需求(50-250%)。作为乙醇是所有影响类别的主要贡献者(65-98%的影响),植物和催化剂选择性的位置显着影响了该过程的环境可持续性。考虑到三种影响类别和LCA结果的不确定性分析,最好的工厂位置将是巴西,为GWP100(-73至-52公斤CO2 eq / tonne 1,3-BD)具有负中值冲击值,最低水消耗中位数(235-299 m(3)/吨1,3-BD),但累积能源需求的最高位数(207-241 Gjeq / Tonne 1,3-BD),后者由于低位甘蔗的乙醇产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号