...
首页> 外文期刊>Acta crystallographica. Section F, Structural biology communications >Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery
【24h】

Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery

机译:冷冻电子显微镜和X射线晶体学:结构生物学和药物发现的互补方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 angstrom resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 angstrom resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (> 500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryoelectron microscopy-based determination of structures at very high resolution.
机译:电子显微镜的发明大大增强了视图科学家的小结构细节。自实施以来,该技术经历了相当大的演变,并且已经延长了可以获得的生物物体获得的分辨率。此外,最新一代配备有直接电子检测器和软件的冷冻电子显微镜,用于自动收集图像,与使用先进的图像分析方法相结合,在分辨率方面大大提高了该技术的性能。虽然计算Sub-10埃克斯特罗姆分辨率结构少于十年前的成就,但它现在是常见的,以在Sub-5 Angstrom分辨率下产生结构甚至更好。相对迅速地获得生物分子的高分辨率结构,特别是大型(> 500kDa),在某些情况下,在某些情况下抵抗了更常规的方法,例如X射线晶体学或核磁共振(NMR)。这么新分解的结构可以是第一次揭示对细胞生理过程至关重要的精确机制。获得原子分辨率的能力可能支持靶向这些蛋白质的新药物,允许药用化学家了解其分子与靶标之间的关系的亲密关系。此外,Cryo-Electronic显微镜的最新发育结合图像分析可以提供有关大分子复合物的构象变化的独特信息。可以使用冷冻电子显微镜和多线型重建方法研究大分子复合物的构象柔韧性。然而,样品的生化质量仍然是在非常高分辨率下常规低温电解显微镜的结构的主要瓶颈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号