首页> 外文期刊>Continuum mechanics and thermodynamics >Thermo-induced curvature and interlayer shear stress analysis of MEMS double-layer structure
【24h】

Thermo-induced curvature and interlayer shear stress analysis of MEMS double-layer structure

机译:MEMS双层结构的热诱导曲率和层间剪切应力分析

获取原文
获取原文并翻译 | 示例
           

摘要

The interlayer stress and delamination failure mechanism of the multilayer membrane structure of microelectromechanical systems under thermal coupling condition are basic research topics in modern micro-optoelectronics. To address the deficiency of the classical plate membrane model in analyzing interlayer stress, this work proposed a more reasonable beam membrane model, deduced the thermo-induced curvature and interlayer shear stress equation of the two-layer system and analyzed the influences of heating power, film/base thickness ratio, and relaxation time. In addition, the finite element model established by Comsol Multiphysics is compared with the classical plate membrane model and beam membrane model. Numerical results showed that the curvatures of the traditional polymer and hybrid structures increased with power, and that the value of the beam membrane model was greater than that of the plate membrane model. The curvature of the hybrid structure increased with film thickness. When the thickness ratio was 0.5, the curvature of the traditional polymer structure reached its maximum value. The finite element results are consistent with the beam membrane model, indicating that the beam membrane model has higher accuracy. When film relaxation time increased to the order of10(-3)smagnitude, the thermal mismatch stress and curvature of the two structures increased considerably. Shear force increased exponentially with distance from the center of the interface and reached its maximum value at the interface end. These results can provide references for the safety design of optical switches.
机译:热耦合条件下微型机电系统多层膜结构的层间应力和分层损伤机理是现代微光电子的基本研究主题。为了解决古典板膜模型的缺陷在分析层间应力时,这项工作提出了更合理的梁膜模型,推导出双层系统的热诱导的曲率和层间剪切应力方程,并分析了加热功率的影响,薄膜/基部厚度比和放松时间。此外,与COMSOL多体型建立的有限元模型与经典板膜模型和梁膜模型进行了比较。数值结果表明,传统聚合物和混合结构的曲率随功率而增加,并且梁膜模型的值大于板膜模型的值。混合结构的曲率随膜厚度而增加。当厚度比为0.5时,传统聚合物结构的曲率达到其最大值。有限元结果与光束膜模型一致,表明光束膜模型具有更高的精度。当胶片松弛时间增加到10(-3)的磁力量,两个结构的热失配应力和曲率相当增加。剪切力随着距界面中心的距离和距离的距离呈指数级增长,并在接口端达到其最大值。这些结果可以为光学开关的安全设计提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号