首页> 外文期刊>Computers & Fluids >Multi-dimensional finite volume scheme for the vorticity transport equations
【24h】

Multi-dimensional finite volume scheme for the vorticity transport equations

机译:涡流传输方程的多维有限体积方案

获取原文
获取原文并翻译 | 示例
           

摘要

A finite-volume scheme is developed for the three-dimensional, incompressible vorticity transport equations (VTE) using multi-dimensional upwinding, with the goal of efficient computations of vortex-dominated flows. By modifying the VTE with a term proportional to the divergence of the vorticity, a stable hyperbolic PDE system with a simple structure is revealed. The structure of the resulting eigen-system, including the vortex stretching term, makes the formulation and solution of the generalized Riemann problem and multi-dimensional upwinding more natural, when compared to the Euler equations. To reduce the computational costs of determining the transverse fluxes, a flux-based wave propagation approach is employed. In this approach, the transverse fluxes are computed via direct manipulation of the one-dimensional generalized Riemann problem with no additional Riemann problem solutions needed. The numerical scheme is implemented within an adaptive mesh refinement framework and evaluated on a series of canonical vortex-dominated flows. A translating vortex flow reveals that the multi-dimensional upwinding substantially outperforms one-dimensional schemes in terms of accuracy and computational time, especially when the vortex propagates oblique to cell surfaces. By including transverse fluxes in simulations of propagating vortex rings, key physical attributes including propagation velocity and impulse can be captured with better accuracy compared to one-dimensional schemes. Further vortex ring simulations demonstrate that the proposed multi-dimensional scheme can preserve vorticity with relatively coarse grids compared to simulations employing the incompressible Euler equations. Integrated quantities from leapfrogging vortex ring problems and energy spectra from decaying turbulent flows confirm that the multi-dimensional scheme can accurately reproduce flows with complex vortex stretching and multiple length scales. (C) 2018 Elsevier Ltd. All rights reserved.
机译:使用多维上挤压为三维,不可压缩的涡流传输方程(VTE)开发了有限卷方案,其目标是有效计算涡流主导的流。通过用与涡旋分歧的术语修改VTE,揭示了一种具有简单结构的稳定双曲线PDE系统。与欧拉方程相比,所得延伸术语的所得eIGen系统的结构包括涡旋拉伸术语,使得广义的Riemann问题的配方和溶液更自然。为了降低确定横向通量的计算成本,采用了一种基于助焊的波传播方法。在这种方法中,通过直接操纵一维广义riemann问题,无需额外的riemann问题解决方案来计算横向磁通量。数值方案在自适应网格细化框架内实现,并在一系列规范涡流主导流中进行评估。平移涡流流动揭示了多维上挤出在精度和计算时间方面基本上优于一维方案,特别是当涡旋传播到细胞表面时。通过在传播涡旋环的模拟中包括横向通量,与一维方案相比,可以通过更好的准确度捕获包括传播速度和脉冲的关键物理属性。进一步的涡旋环模拟表明,与采用不可压缩的欧拉方程的模拟相比,所提出的多维方案可以用相对粗略的电网保持涡流。跨越涡旋环问题的集成量与衰减湍流的问题和能谱证实了多维方案可以用复杂的涡旋拉伸和多个长度尺度准确地再现流动。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号