【24h】

Hot embossed polyethylene through-hole chips for bead-based microfluidicdevices

机译:用于珠型微流控设备的热压纹聚乙烯通孔芯片

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications force cost considerations to be kept low and throughput high. As such, materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30. min with the ability to scale up 4 times by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3. ng/mL, thereby demonstrating that the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing.
机译:在过去的十年中,人们对将微流体系统转换为现实世界的临床实践的兴趣不断增长,尤其是用于现场护理或接近患者的环境中。虽然微流体的最初制造进展主要涉及硅和玻璃的蚀刻,但对于现场护理用途而言,这些材料的按比例缩放的经济性无法修改,因为现场护理的单项测试要求将成本考虑因素保持在较低水平且通量较高。因此,需要更符合医护点需求的材料。在本手稿中,讨论了从各向异性刻蚀的硅片衍生的热压花通孔低密度聚乙烯组件的制造。这种半不透明的聚合物易于灭菌和回收利用,可为荧光测量提供低背景噪音,并且比通常用于微流体应用的其他热塑性塑料(例如环烯烃共聚物(COC))成本更低。为了由这种用于微流体的替代材料制造通孔微芯片,描述了一种使用高温,耐高压模具的制造技术。该铝基环氧模具用作压花的正型主模具,被浇铸在硅晶片中金字塔形凹坑的蚀刻阵列上。讨论了在浇铸环氧树脂和PDMS浇铸环氧树脂之前对晶圆进行表面处理的方法,以保护硅晶圆以备将来使用。对于变化的压花温度,观察到聚乙烯厚度的变化。本文所述的方法可在不到30分钟的时间内快速制造20个一次性单次使用的切屑,并具有通过同时使用多个模具放大4倍的能力。如最近开发的Programmable Bio-Nano-Chip那样,当作为支持多孔磁珠传感器的平台进行耦合时,此磁珠芯片系统可以实现对心脏生物标志物C反应蛋白的检测极限为0.3。 ng / mL,从而证明该方法与即时医疗测试中的高性能,现实世界中的临床测量兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号