...
首页> 外文期刊>Chemical Reviews >Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials
【24h】

Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials

机译:非绝热兴奋状态分子动力学:理论与应用,用于延长分子材料中的光药

获取原文
           

摘要

Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of-atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
机译:光学活性的分子材料,例如有机缀合的聚合物和生物系统,其特征在于电子和振动自由度之间的强耦合。通常,模拟必须超出生成的oppenHeimer近似,以考虑激发状态之间的非绝热耦合。实际上,非绝热动力学通常与涉及充电和能量转移的激子动态和光学,以及激子解离和电荷重组相关联。了解这些材料中的光诱导动力学对于提供激子形成,进化和腐烂的准确描述至关重要。在过去的几十年中,这种跨学科领域已经显着成熟。制定新的理论框架,开发更高效和准确的计算算法,以及高性能计算机硬件的演化已经将这些模拟扩展到具有数百原子的大量分子系统,包括有机半导体和生物分子的许多研究。在本文中,我们将描述最近的理论步,包括在表面跳跃方法中的电子干膜的处理,溶剂效应,琐碎的无畏过度交叉,基于转变密度的数据分析,以及这些数值方法的有效计算实现。基于高斯近似,我们还强调新开发的半导体方法,该方法保留阶段和宽度信息,以考虑显着的干式扑灭和干扰效果,同时保持表面跳跃方法的高效率。已经采用上述发展在各种分子材料中成功描述了光学药物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号