首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >Optimization of the in situ recovery of butanol from ABE fermentation broth via membrane pervaporation
【24h】

Optimization of the in situ recovery of butanol from ABE fermentation broth via membrane pervaporation

机译:通过膜渗透蒸发优化Abe发酵汤的原位回收丁醇

获取原文
获取原文并翻译 | 示例
       

摘要

Butanol produced via the ABE fermentation is plagued with low final concentrations and low yield. The selective removal of butanol from the fermentation broth by integrating a separation process to the fermenter for the in situ recovery of butanol has been proposed by many researchers. In this investigation, the integration of a membrane pervaporation separation process with the continuous ABE fermentation system has been simulated and optimized using a multi-objective genetic algorithm. The ABE fermentation model proposed by Mulchandani and Volesky was used and the multi-objective optimization problem was defined to simultaneously maximize the butanol productivity, the overall butanol concentration and the sugar conversion. The three objective functions, if non-dominated, define the Pareto domain of the optimization problem along with the four decision variables, namely the dilution rate, the feed sugar concentration, the cell retention factor and the membrane surface area. The optimal solutions of the integrated process for two different pervaporation membrane models were compared to the stand-alone continuous fermentation. By adding an in situ separation system to the continuous ABE fermentation, the optimal butanol productivity and overall butanol concentration increased by approximately 250% compared to those of the non-integrated fermenter. Furthermore, the sugar conversion also increased. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:通过ABE发酵产生的丁醇以低最终浓度和低产量困扰。通过将分离过程与许多研究人员提出,通过将分离过程与发酵液从发酵液中整合到发酵液中,已经提出了许多研究人员。在该研究中,使用多目标遗传算法模拟和优化了与连续ABE发酵系统的膜渗透蒸发分离过程的整合。使用Mulchandani和Volsky提出的ABE发酵模型,并且定义了多目标优化问题,以同时提高丁醇生产率,总丁醇浓度和糖转化。如果非主导的话,三个客观函数与四个决策变量一起定义优化问题的帕累托域,即稀释率,饲料糖浓度,电池保留因子和膜表面积。将两种不同的渗透膜模型的综合方法的最佳解决方案与独立的连续发酵进行比较。通过向连续的ABE发酵添加原位分离系统,与非整合发酵罐的最佳丁醇生产率和总丁醇浓度增加约250%。此外,糖转化也增加了。 (c)2019化学工程师机构。 elsevier b.v出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号