...
首页> 外文期刊>ChemCatChem >Embedding Sulfur Atoms in Decahedron Bismuth Vanadate Crystals with a Soft Chemical Approach for Expanding the Light Absorption Range
【24h】

Embedding Sulfur Atoms in Decahedron Bismuth Vanadate Crystals with a Soft Chemical Approach for Expanding the Light Absorption Range

机译:用软化学方法嵌入亚烃基铋中的硫原子以扩大光吸收范围

获取原文
获取原文并翻译 | 示例

摘要

Bandgap engineering of semiconductors attracts great attention in the field of photocatalysis to enhance the conversion efficiency of semiconductors. Introducing impurity atoms, such as nitrogen, sulfur and metal atoms, into the crystal lattice of semiconductors is one of the commonly used methods to broaden the light absorption range. However, traditional methods to embed impurity atoms require harsh conditions like high temperatures, which will destroy the morphology-tailored structure of semiconductors in many cases. Herein, we demonstrated a soft chemical approach, hydrothermal method, to expand the light absorption range by introducing sulfur atoms in the typical semiconductor bismuth vanadate (BiVO4). After embedding sulfur atoms, the light absorption edge of BiVO4 crystals can be expanded from 530 nm to more than 650 nm, while, the decahedron morphology with exposed {010} and {110} facets of BiVO4 crystals was still well-maintained. The sulfur-embedded BiVO4 crystals show photocurrent response even under longer wavelengths than 550 nm and also exhibit an evident enhancement than pristine BiVO4 in photoelectrochemical performances under visible light. Our work offers a strategy for manipulating the band structures of semiconductors for applications in solar energy conversion.
机译:半导体的带隙工程在光催化领域吸引了极大的关注,以提高半导体的转换效率。引入杂质原子,例如氮,硫和金属原子,在半导体的晶格中是拓宽光吸收范围的常用方法之一。然而,传统方法以嵌入杂质原子需要苛刻的条件,如高温,这将在许多情况下破坏半导体的形态定制结构。在此,我们通过在典型的半导体铋钒酸盐(BIVO4)中引入硫原子来扩展光吸收范围的软化学方法。在嵌入硫原子之后,Bivo4晶体的光吸收边缘可以从530nm扩展到超过650nm,而Bivo4晶体的曝光{010}和{110}刻面的癸二种形态仍然保持良好。硫嵌入式BIVO4晶体表现出光电流响应,即使在比550nm的较长波长下也会在较长的波长下,并且在可见光下的光电化学性能中的原始BIVO4也表现出明显的增强。我们的工作提供了一种用于操纵半导体带结构的策略,以便在太阳能转换中的应用。

著录项

  • 来源
    《ChemCatChem 》 |2020年第6期| 共6页
  • 作者单位

    Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy State Key Lab Catalysis Zhongshan Rd 457 Dalian 116023 Peoples R China;

    Henan Univ Natl &

    Local Joint Engn Res Ctr Appl Technol Hybr Kaifeng 475004 Peoples R China;

    Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy State Key Lab Catalysis Zhongshan Rd 457 Dalian 116023 Peoples R China;

    Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy State Key Lab Catalysis Zhongshan Rd 457 Dalian 116023 Peoples R China;

    Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy State Key Lab Catalysis Zhongshan Rd 457 Dalian 116023 Peoples R China;

    PetroChina Res Inst Petr Explorat &

    Dev 20 Xueyuan Rd Beijing 100083 Peoples R China;

    PetroChina Res Inst Petr Explorat &

    Dev 20 Xueyuan Rd Beijing 100083 Peoples R China;

    Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy State Key Lab Catalysis Zhongshan Rd 457 Dalian 116023 Peoples R China;

    Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy State Key Lab Catalysis Zhongshan Rd 457 Dalian 116023 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学 ;
  • 关键词

    Bismuth vanadate; Semiconductor; Soft chemical approach; Light absorption; Electronic structure;

    机译:铋钒酸盐;半导体;软化学方法;光吸收;电子结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号