首页> 外文期刊>Biomechanics and modeling in mechanobiology >Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice
【24h】

Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice

机译:血管紧张素II注入小鼠主动脉枝上结构损伤和过度机械菌株的共定位

获取原文
获取原文并翻译 | 示例
       

摘要

Animal models of aortic aneurysm and dissection can enhance our limited understanding of the etiology of these lethal conditions particularly because early-stage longitudinal data are scant in humans. Yet, the pathogenesis of often-studied mouse models and the potential contribution of aortic biomechanics therein remain elusive. In this work, we combined micro-CT and synchrotron-based imaging with computational biomechanics to estimate in vivo aortic strains in the abdominal aorta of angiotensin-II-infused ApoE-deficient mice, which were compared with mouse-specific aortic microstructural damage inferred from histopathology. Targeted histology showed that the 3D distribution of micro-CT contrast agent that had been injected in vivo co-localized with precursor vascular damage in the aortic wall at 3 days of hypertension, with damage predominantly near the ostia of the celiac and superior mesenteric arteries. Computations similarly revealed higher mechanical strain in branching relative to non-branching regions, thus resulting in a positive correlation between high strain and vascular damage in branching segments that included the celiac, superior mesenteric, and right renal arteries. These results suggest a mechanically driven initiation of damage at these locations, which was supported by 3D synchrotron imaging of load-induced ex vivo delaminations of angiotensin-II-infused suprarenal abdominal aortas. That is, the major intramural delamination plane in the ex vivo tested aortas was also near side branches and specifically around the celiac artery. Our findings thus support the hypothesis of an early mechanically mediated formation of microstructural defects at aortic branching sites that subsequently propagate into a macroscopic medial tear, giving rise to aortic dissection in angiotensin-II-infused mice.
机译:主动脉瘤和解剖的动物模型可以增强我们对这些致死条件的病因的有限理解,特别是因为早期的纵向数据在人类中瘢痕。然而,通常研究的小鼠模型的发病机制以及其中主动脉生物力学的潜在贡献仍然难以捉摸。在这项工作中,我们将微型CT和基于同步的与计算生物力学的成像组合在血管紧张素-II注入的嗜热小鼠的腹主动脉瘤中的体内主动脉株中估计,这与从中推断的小鼠特异性主动脉微观结构损伤进行比较组织病理学。靶向组织学表明,在高血压的3天的主动脉壁上与主动脉壁中的前体血管损伤注射的微型CT造影剂的3D分布,主要在腹腔和高级肠系膜动脉的骨膜附近损伤。计算类似地揭示了相对于非分支区域的分支中的更高机械应变,从而导致包括腹腔,优质肠系膜和右肾动脉的分支段中的高应变和血管损伤之间的正相关。这些结果表明,通过血管紧张素-II注入的血管紧张素-II-IM-IM-IM腹部主动脉的3D同步分层的3D同步分层的3D同步成像支持机械驱动的损坏。也就是说,前体内测试的主动脉中的主要校内分层平面也在侧分支附近,特别是腹腔动脉周围。因此,我们的研究结果支持在主动脉支化位点的早期机械介导的微观结构缺陷形成的假设中,随后繁殖到宏观内侧撕裂中,引起血管紧张素-II-II注入小鼠的主动脉夹层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号