...
首页> 外文期刊>Biology Bulletin Reviews >Evolution of nitrogen-fixing symbioses on the basis of bacterial migration from mycorrhizal fungi and soil into plant tissues
【24h】

Evolution of nitrogen-fixing symbioses on the basis of bacterial migration from mycorrhizal fungi and soil into plant tissues

机译:基于菌根真菌和土壤中的细菌迁移基于植物组织的细菌迁移的氮素固定共混物的演变

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractA hypothesis is proposed on the emergence of N2-fixing plant symbionts from soil diazotrophs and satellites of Glomeromycota fungi that form arbuscular mycorrhizae (AM). This universal form of plant-microbe symbiosis possibly appeared due to the integration of ancestral land plants (rhyniophytes, psylophytes) and microbial consortia composed of AM-fungi assimilating soil phosphates and bacteria fixing atmospheric CO2and/or N2. The release of these bacteria from AM-fungal hyphae into plant tissues elicited the selection of genotypes capable of fungi-independent multiplication in plants, as well as the fixation in bacterial genomes of the genes for the synthesis of chitin-like signal factors stimulating the development of symbiotic structures. An early stage of this evolution might been represented by the formation of N2-fixing syncyanoses, and the late stage might have been realized by the formation of nodular symbioses of dicots from the Eurosid I clade with rhizobia (α- and β-proteobacteria) and with the actinobacteriaFrankia. The emergence of these symbioses was possibly based on the migration of soil and endophytic bacteria into the storage organs (modified stems or lateral roots), where the optimal conditions were established not only for N2fixation but also for the evolution of bacteria towards increased symbiotic activity. This evolution resulted in the emergence of primary rhizobia (Bradyrhizobium,Burkholderia), which acted as donors ofsymgenes for a broad spectrum of microbes transformed into secondary rhizobia (Rhizobium,Sinorhizobium). The subsequent evolution of nodular symbioses was directed at an increased efficiency of symbiotrophic nitrogen nutrition in host plants following two scenarios: (a) “expensive,” which is based on an increase in N2-fixing activity via the transformation of bacteria into nonreproducible bacteroids; (b) “economical,” based on the acquisition of the determinate nodule structure and ureide nitrogen assimilation.]]>
机译:<![CDATA [<标题>抽象 ara>提出了关于N <下标> 2 的出现,从土壤重氮霉素和肾小球菌根真菌的土壤重氮植物和卫星的出现,形成丛霉菌菌根(是)。这种通用的植物微生物共生形式可能出现由于祖先的土地植物(鼻咽癌,脑脊育体)和微生物组成的整合,由AM-Fungi吸收土壤磷酸盐和固定大气CO <下标> 2 和/或n <下标> 2 。从AM-Fungal菌丝进入植物组织的这些细菌的释放引发了能够在植物中无关繁殖繁殖的基因型的选择,以及基因的细菌基因组的固定,用于合成培养的甲壳素样信号因子共生结构。这种进化的早期阶段可能是通过形成N <下标> 2 - 混凝剂的Syncyanoses来表示,并且通过与Rhizobia的欧元素的欧元素( α-和β-蛋白细菌)和actinobacteria <重点类型=“斜体”>弗兰基斯。这些共生的出现可能是基于土壤和内生细菌的迁移到储存器官(改性茎或侧面)中,其中不仅为N <下标> 2 固定而建立了最佳条件细菌的演变对增长的共生活性。这种进化导致原发性根瘤菌的出现(<重点类型=“斜体”> Bradyrhizobium ,<重点类型=“斜体”> Burkholderia ),其作为<重点类型=“斜体的捐赠者“> Sym 基因用于将次级无根瘤菌转化为次级无根瘤菌的广谱(<强调型=”斜体“>根瘤菌,<重点型=”斜体“> Sinorhizobium )。在两种情况下,在宿主植物中的共生氮营养中的效率提高了结节性Symbiase的随后演化:(a)“昂贵”,其基于N <下标> 2 - 掺杂活性的增加将细菌转化为非经济产量的诱导菌; (b)“经济,”基于采集测定结节结构和硫化物氮同化。]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号