...
首页> 外文期刊>RSC Advances >A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery
【24h】

A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery

机译:一种新型低温固态途径,用于纳米结构立方石榴石Li7La3zR2O12及其在锂离子电池的应用

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach to the solid-state synthesis of garnet-type cubic Li7La3Zr2O12 (c-LLZO) nanostructured particles with 1.0 mass% Al at 750 degrees C within 3 h. In contrast to conventional solid-state processes, a highly reactive precursor was prepared in two steps: (i) by homogenizing the stoichiometric mixture without Li, and (ii) subsequent addition of Li in the form of an ethanolic solution of lithium acetate. The actual composition determined by ICP analysis was Li6.61La3Zr2Al0.13O11.98. Sintering these nanoparticles at 1100 degrees C for 3 h in air after cold isostatic pressing brought a dense ceramic pellet with a relative density of 90.5%. The corresponding ionic conductivity with Au electrodes was 1.6 x 10(-4) S cm(-1) at room temperature. To study its electrochemical behavior as an electrolyte, a model cell of Li//(1 M LiPF6 + c-LLZO)//LiCoO2 configuration was constructed. Cyclic voltammetry of the cell delivered one set of redox couple with narrow voltage separation (15 mV) with a Li+ diffusion coefficient at room temperature of about 2 x 10(-11) cm(2) s(-1) at the interface between LiCoO2 and 1 M LiPF6 + c-LLZO. The cell received an average discharge capacity of 64.4, 60.3, 56.1, 51.9 and 46.9 mA h cm(-2) mm(-1) at discharge rates 0.5C, 1C, 2C, 4C and 6C, respectively. The cell exhibited complete oxidation and reduction reactions with an average initial discharge capacity of about 64 mA h cm(-2) mm(-1), which is 92.7% of LiCoO2 theoretical value. These observations indicate the applicability of the present c-LLZO as an electrolyte for a solid-state Li-ion battery.
机译:我们提出了一种新的方法在3小时内在750℃下用1.0质量%Al的石榴石型立方体Li7La3 Zr2O12(C-LLZO)纳米结构颗粒的新方法。与传统的固态方法相比,通过均质化化学计量混合物的情况下制备高反应性前体:(I),通过锂的乙酸锂乙醇溶液的形式加入(II)。通过ICP分析确定的实际组成是Li6.61La3zR2Al0.13O11.98。在冷等静压后,在1100℃下在1100℃下烧结这些纳米颗粒3小时,其具有相对密度为90.5%的致密陶瓷颗粒。在室温下,具有Au电极的相应离子电导率为1.6×10(-4)厘米(-1)。为了研究其作为电解质的电化学行为,构建了Li //(1M LiPF6 + C-LLZO)// LiCoO2构型的模型细胞。电池的循环伏安法在LiCoO2之间的界面处,在室温下,在室温下,在窄电压分离(15mV)的窄电压分离(15mV)中,在LiCoO2之间的界面处,在LiCoO2之间的界面,在约2×10(-11)厘米(2)厘米(2)厘米(-1)的窄+延伸系数下和1 m lipf6 + c-llzo。该电池在放电速率0.5℃,1c,2c,4c和6c下接收平均放电容量为64.4,60.3,56.1,51.9和46.9 mA hcm(-2)mm(-2)mm(-1)。该细胞表现出完全的氧化和还原反应,其平均初始放电容量为约64 mA Hcm(-2)mm(-1),其为LiCoO2理论值的92.7%。这些观察结果表明本发明的C-LLZO作为固态锂离子电池的电解质的适用性。

著录项

  • 来源
    《RSC Advances 》 |2016年第67期| 共12页
  • 作者单位

    Shizuoka Univ Res Inst Elect Hamamatsu Shizuoka 4328561 Japan;

    Shizuoka Univ Grad Sch Engn Hamamatsu Shizuoka 4328561 Japan;

    Shizuoka Univ Res Inst Elect Hamamatsu Shizuoka 4328561 Japan;

    Leibniz Univ Hannover Ctr Solid State Chem &

    New Mat ZFM Inst Phys Chem &

    Electrochem D-30167 Hannover Germany;

    Leibniz Univ Hannover Ctr Solid State Chem &

    New Mat ZFM Inst Phys Chem &

    Electrochem D-30167 Hannover Germany;

    Shizuoka Univ Grad Sch Engn Hamamatsu Shizuoka 4328561 Japan;

    Shizuoka Univ Res Inst Elect Hamamatsu Shizuoka 4328561 Japan;

    Shizuoka Univ Res Inst Elect Hamamatsu Shizuoka 4328561 Japan;

    Shizuoka Univ Res Inst Elect Hamamatsu Shizuoka 4328561 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号