首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Structure and Lithium-Ion Dynamics in Fluoride-Doped Cubic Li7La3Zr2O12 (LLZO) Garnet for Li Solid-State Battery Applications
【24h】

Structure and Lithium-Ion Dynamics in Fluoride-Doped Cubic Li7La3Zr2O12 (LLZO) Garnet for Li Solid-State Battery Applications

机译:用于LI固态电池应用的氟化物掺杂立方Li7La3zR2O12(LLZO)石榴石的结构和锂离子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The lithium-stuffed garnet Li7La3Zr2O12 (LLZO), when suitably doped, is a promising candidate material for use as a solid-state electrolyte within advanced Li-ion batteries. It possesses the thermal and mechanical stability of many inorganic ceramics, while exhibiting high Li+ ionic conductivities often associated with conventional liquid electrolytes, making it an ideal component for large-scale energy storage. However, only the high-temperature cubic phase has any meaningful Li-ion conductivity. Typically the formation of this phase is achieved through cation doping (e.g., Al3+ on the Li site) to lower the Li content and so disrupt Li ordering. However, Li-site doping, in particular, may potentially lead to some disruption of the Li-ion conduction pathways and suboptimal ionic conductivities. Consequently, other novel doping strategies involving the anion site are gaining traction, for example, F- for O2- as an alternative strategy to lower the Li content without directly blocking the lithium-diffusion pathways. For the first time, classical potential-based simulations have been employed to simulate the incorporation of fluoride anions into LLZO. Low incorporation energies have been calculated, suggesting fluoride anions are stable on the oxygen sites with a compensating lithium-ion vacancy defect. Molecular dynamics calculations suggest a definitive phase transition to the more desirable cubic phase of LLZO when doped with fluoride at temperature significantly lower than that for the tetragonal-cubic phase transition found for pure LLZO. Remarkably, the lithium-ion transport properties are shown to improve in the fluoride-doped samples particularly at low temperatures due to the stabilization of the cubic phase, suggesting anion doping of garnet systems may be a compelling alternative route to optimize the ionic conductivity.
机译:锂毛绒石榴石Li7La3Zr2O12(LLZO)中,当适当掺杂,是用作内先进的锂离子电池的固态电解质的有前途的候选材料。它具有许多无机陶瓷的热稳定性和机械稳定性,同时表现出通常与常规液体电解质相关联的高的Li +离子电导率,使它成为理想的组件,其用于大规模的能量存储。然而,只有高温立方相具有任何有意义的Li离子传导性。典型地,这相的形成是通过阳离子的掺杂实现(例如,Al 3+的上Li位点)以降低Li的含量,因此扰乱李排序。然而,立位掺杂,特别地,可潜在地导致的锂离子传导路径和次优离子电导率一些中断。因此,涉及阴离子部位以外新颖掺杂策略获得牵引力,例如,F-用于O2-作为替代策略,以降低Li含量,而不直接阻断锂扩散通路。首次,古典基于潜在的仿真已用于氟化物阴离子的结合模拟成LLZO。低能量掺入已被计算,表明氟化物的阴离子是在氧场所补偿锂离子空位缺陷稳定。当在温度比显著下为四方晶立方相变与氟化掺杂发现纯LLZO分子动力学的计算表明一个明确的相转变到更期望的立方相的LLZO。值得注意的是,锂离子迁移性质示特别是在低温下的氟掺杂的样品中,以改善由于立方相的稳定化,这表明石榴石系统的阴离子掺杂可以是优化的离子传导性的吸引力的替代路线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号