...
首页> 外文期刊>BioSystems >Nonlinear response of gene expression to chemical perturbations: A noise-detector model and its predictions
【24h】

Nonlinear response of gene expression to chemical perturbations: A noise-detector model and its predictions

机译:基因表达对化学扰动的非线性响应:噪声检测器模型及其预测

获取原文
获取原文并翻译 | 示例
           

摘要

The widespread use of microarrays provided a first glimpse at some simple laws and organizing principles that govern the transcriptome. Previous analyses have shown that the transcriptional organization is very heterogeneous and characterized by a power-law decay for gene expression levels. Moreover, a simple law was unveiled suggesting that gene expression dynamic changes under stress are proportional to their initial expression values. However, to elucidate and assess the underlying governing principles of transcriptional organization, we do not only need to identify them, but also provide theoretical models that are able to faithfully capture and reproduce them. Here we present a method to investigate the gene expression dynamics inspired by the theory of nonlinear transformation of random signals and noise. The model is able to explain not only the well-known power-law decay for abundance of expression levels, but also to reproduce the linear dependence of the standard deviation of gene expression change with respect to the initial expression value (also known as rich-travels-more dynamics). To our knowledge, this is the first model applied to gene expression dynamics that is able to simultaneously predict both statistical features. The theoretical framework derives an indicator to measure the coupling between gene expression and specific perturbations. Using genome-wide transcriptional data, this indicator identifies genes strongly coupled to specific inflammatory responses to different pathogens. The novel application of signal and noise theory to study intracellular responses and gene expression changes offers not only a new theoretical avenue to study transcriptional responses to environmental stresses and chemical signals but also provides predictive capability at the genome scale.
机译:微阵列的广泛使用使人们可以初步了解控制转录组的一些简单法律和组织原则。先前的分析表明,转录组织非常异质,其特征是基因表达水平的幂律衰减。此外,揭示了一条简单的规律,表明在压力下基因表达的动态变化与其初始表达值成正比。但是,为了阐明和评估转录组织的基本控制原理,我们不仅需要识别它们,还需要提供能够忠实捕获和复制它们的理论模型。在这里,我们提出一种方法,研究随机信号和噪声的非线性变换理论对基因表达动力学的影响。该模型不仅可以解释广为人知的表达水平的幂律衰减,而且还可以再现基因表达变化的标准偏差相对于初始表达值的线性依赖性(也称为rich-旅行更多动态)。据我们所知,这是第一个应用于基因表达动力学的模型,能够同时预测两个统计特征。该理论框架得出了一个指标,用于测量基因表达与特定扰动之间的耦合。利用全基因组转录数据,该指标可鉴定与对不同病原体的特定炎症反应密切相关的基因。信号和噪声理论在研究细胞内应答和基因表达变化方面的新颖应用不仅为研究对环境压力和化学信号的转录应答提供了新的理论途径,而且还提供了在基因组范围内的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号