首页> 外文期刊>Journal of thermal analysis and calorimetry >Mechanism and kinetics of thermal degradation of insulating materials developed from cellulose fiber and fire retardants
【24h】

Mechanism and kinetics of thermal degradation of insulating materials developed from cellulose fiber and fire retardants

机译:从纤维素纤维和阻燃剂中产生的绝缘材料热降解的机理和动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanism and kinetics of thermal degradation of materials developed from cellulose fiber and synergetic fire retardant or expandable graphite have been investigated using thermogravimetric analysis. The model-free methods such as Kissinger-Akahira-Sunose (KAS), Friedman, and Flynn-Wall-Ozawa (FWO) were applied to measure apparent activation energy (E (alpha) ). The increased E (alpha) indicated a greater thermal stability because of the formation of a thermally stable char, and the decreased E (alpha) after the increasing region related to the catalytic reaction of the fire retardants, which revealed that the pyrolysis of fire retardant-containing cellulosic materials through more complex and multi-step kinetics. The Friedman method can be considered as the best method to evaluate the E (alpha) of fire-retarded cellulose thermal insulation compared with the KAS and FWO methods. A master-plots method such as the Criado method was used to determine the possible degradation mechanisms. The degradation of cellulose thermal insulation without a fire retardant is governed by a D3 diffusion process when the conversion value is below 0.6, but the materials containing synergetic fire retardant and expandable graphite fire retardant may have a complicated reaction mechanism that fits several proposed theoretical models in different conversion ranges. Gases released during the thermal degradation were identified by pyrolysis-gas chromatography/mass spectrometry. Fire retardants could catalyze the dehydration of cellulosic thermal insulating materials at a lower temperature and facilitate the generation of furfural and levoglucosenone, thus promoting the formation of char. These results provide useful information to understand the pyrolysis and fire retardancy mechanism of fire-retarded cellulose thermal insulation.
机译:采用热重分析研究了从纤维素纤维和协同阻燃剂或可膨胀石墨中产生的材料的热降解的机制和动力学。应用了无模型方法,如Kissinger-Akahira-Sunose(KAS),弗里德曼和Flynn-Wall-ozawa(FWO)测量表观活化能量(E(alpha))。增加的E(α)表明了由于在与阻燃剂的催化反应有关的增加的区域之后形成了热稳定的炭,并且降低了e(α),这揭示了阻燃剂的热解 - 通过更复杂和多步动性释放纤维素材料。与KAS和FWO方法相比,Friedman方法可以被认为是评估防火纤维素绝热的E(α)的最佳方法。使用诸如CRIADO方法的主图方法来确定可能的降解机制。当转化值低于0.6时,没有阻燃剂的纤维素绝热的降解由D3扩散过程控制,但含有协同阻燃和可膨胀石墨阻燃剂的材料可能具有复杂的反应机制,该机制适合几种提出的理论模型不同的转换范围。通过热解 - 气相色谱/质谱法鉴定在热降解期间释放的气体。阻燃剂可以在较低温度下催化纤维素绝热材料的脱水,并促进糠醛和左旋葡聚糖的产生,从而促进炭的形成。这些结果提供了了解防火纤维素保温的热解和防火机理的有用信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号