...
首页> 外文期刊>Current pharmaceutical design >AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species
【24h】

AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species

机译:基于原子力显微镜的单分子技术:阐明淀粉样蛋白致病物种

获取原文
获取原文并翻译 | 示例

摘要

Background: A wide class of human diseases and neurodegenerative disorders, such as Alzheimer's disease, is due to the failure of a specific peptide or protein to keep its native functional conformational state and to undergo a conformational change into a misfolded state, triggering the formation of fibrillar cross-beta sheet amyloid aggregates. During the fibrillization, several coexisting species are formed, giving rise to a highly heterogeneous mixture. Despite its fundamental role in biological function and malfunction, the mechanism of protein self-assembly and the fundamental origins of the connection between aggregation, cellular toxicity and the biochemistry of neurodegeneration remains challenging to elucidate in molecular detail. In particular, the nature of the specific state of proteins that is most prone to cause cytotoxicity is not established. Methods: In the present review, we present the latest advances obtained by Atomic Force Microscopy (AFM) based techniques to unravel the biophysical properties of amyloid aggregates at the nanoscale. Unraveling amyloid single species biophysical properties still represents a formidable experimental challenge, mainly because of their nanoscale dimensions and heterogeneous nature. Bulk techniques, such as circular dichroism or infrared spectroscopy, are not able to characterize the heterogeneity and inner properties of amyloid aggregates at the single species level, preventing a profound investigation of the correlation between the biophysical properties and toxicity of the individual species. Conclusion: The information delivered by AFM based techniques could be central to study the aggregation pathway of proteins and to design molecules that could interfere with amyloid aggregation delaying the onset of misfolding diseases.
机译:背景:人类疾病和神经退行性疾病(例如阿尔茨海默氏病)的种类繁多,是由于特定的肽或蛋白质无法保持其天然功能构象状态并将构象变化变为错误折叠状态,从而触发了这种疾病的形成。原纤维交叉β折叠淀粉样蛋白聚集体。在原纤化过程中,形成了几种共存的物种,从而产生了高度异质的混合物。尽管其在生物学功能和功能失常中起着基本作用,但蛋白质自组装的机制以及聚集,细胞毒性和神经退行性生物化学之间联系的基本起源仍然难以在分子细节上阐明。特别地,尚未确定最容易引起细胞毒性的蛋白质特定状态的性质。方法:在本综述中,我们介绍了通过基于原子力显微镜(AFM)的技术在纳米尺度上揭示淀粉样蛋白聚集体的生物物理特性的最新进展。解开淀粉样蛋白单一物种的生物物理特性仍然代表着巨大的实验挑战,这主要是由于它们的纳米尺度尺寸和异质性。诸如圆二色性或红外光谱之类的批量技术无法在单个物种水平上表征淀粉样蛋白聚集体的异质性和内部特性,从而无法深入研究各个物种的生物物理特性与毒性之间的相关性。结论:基于原子力显微镜的技术所传递的信息对于研究蛋白质的聚集途径以及设计可能干扰淀粉样蛋白聚集从而延迟误折叠疾病发作的分子可能是至关重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号