...
首页> 外文期刊>Journal of Neurophysiology >Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model
【24h】

Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model

机译:闭环呼吸控制模型中的Eupnea,Tachypnea和自动化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

How sensory information influences the dynamics of rhythm generation varies across systems, and general principles for understanding this aspect of motor control are lacking. Determining the origin of respiratory rhythm generation is challenging because the mechanisms in a central circuit considered in isolation may be different from those in the intact organism. We analyze a closed-loop respiratory control model incorporating a central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics, oxygen handling, and chemosensory components. We show that 1) embedding the BRS model neuron in a control loop creates a bistable system; 2) although closed-loop and open-loop (isolated) CPG systems both support eupnea-like bursting activity, they do so via distinct mechanisms; 3) chemosensory feedback in the closed loop improves robustness to variable metabolic demand; 4) the BRS model conductances provide an autoresuscitation mechanism for recovery from transient interruption of chemosensory feedback; and 5) the in vitro brain stem CPG slice responds to hypoxia with transient bursting that is qualitatively similar to in silico autoresuscitation. Bistability of bursting and tonic spiking in the closed-loop system corresponds to coexistence of eupnea-like breathing, with normal minute ventilation and blood oxygen level and a tachypnea-like state, with pathologically reduced minute ventilation and critically low blood oxygen. Disruption of the normal breathing rhythm, through either imposition of hypoxia or interruption of chemosensory feedback, can push the system from the eupneic state into the tachypneic state. We use geometric singular perturbation theory to analyze the system dynamics at the boundary separating eupnea-like and tachypnea-like outcomes.
机译:感官信息如何影响节奏生成的动态因系统而异,缺乏了解电机控制的这一方面的一般原则。确定呼吸节律生成的起源是具有挑战性的,因为在隔离中考虑的中央电路中的机制可能与完整生物体中的那些不同。我们分析了包含中心图案发生器(CPG)的闭环呼吸控制模型,曲线铃声(BRS)模型,以及肺部力学,氧气处理和化学感染组件。我们展示了1)在控制回路中嵌入BRS模型神经元创建一个双稳态系统; 2)虽然闭环和开环(隔离)CPG系统都支持Eupnea样式的爆破活动,但它们通过独特的机制来实现; 3)闭环中的化学感应反馈改善了可变代谢需求的鲁棒性; 4)BRS模型电导提供了从化学感应反馈的瞬态中断恢复的自动化机制; 5)体外脑茎CpG切片对缺氧具有瞬态爆发,其与Silico自动抑制出来的质量类似。闭环系统中的爆破和滋补尖峰的双稳态对应于Eupnea样呼吸的共存,具有正常的通风和血氧水平和血液氧气水平,并且病于病变的微小通风和致力于低血氧。通过缺氧或中断化学感应反馈的突然呼吸节律破坏,可以将系统从eUpneic状态推入停止状态。我们使用几何奇异扰动理论来分析分离eupnea样的边界的系统动态和旋耳状腹泻的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号