首页> 美国卫生研究院文献>Journal of Neurophysiology >Central Pattern Generators: Eupnea tachypnea and autoresuscitation in a closed-loop respiratory control model
【2h】

Central Pattern Generators: Eupnea tachypnea and autoresuscitation in a closed-loop respiratory control model

机译:中央模式发生器:闭环呼吸控制模型中的呼吸暂停呼吸急促和自动复苏

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

How sensory information influences the dynamics of rhythm generation varies across systems, and general principles for understanding this aspect of motor control are lacking. Determining the origin of respiratory rhythm generation is challenging because the mechanisms in a central circuit considered in isolation may be different from those in the intact organism. We analyze a closed-loop respiratory control model incorporating a central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics, oxygen handling, and chemosensory components. We show that 1) embedding the BRS model neuron in a control loop creates a bistable system; 2) although closed-loop and open-loop (isolated) CPG systems both support eupnea-like bursting activity, they do so via distinct mechanisms; 3) chemosensory feedback in the closed loop improves robustness to variable metabolic demand; 4) the BRS model conductances provide an autoresuscitation mechanism for recovery from transient interruption of chemosensory feedback; and 5) the in vitro brain stem CPG slice responds to hypoxia with transient bursting that is qualitatively similar to in silico autoresuscitation. Bistability of bursting and tonic spiking in the closed-loop system corresponds to coexistence of eupnea-like breathing, with normal minute ventilation and blood oxygen level and a tachypnea-like state, with pathologically reduced minute ventilation and critically low blood oxygen. Disruption of the normal breathing rhythm, through either imposition of hypoxia or interruption of chemosensory feedback, can push the system from the eupneic state into the tachypneic state. We use geometric singular perturbation theory to analyze the system dynamics at the boundary separating eupnea-like and tachypnea-like outcomes.>NEW & NOTEWORTHY A common challenge facing rhythmic biological processes is the adaptive regulation of central pattern generator (CPG) activity in response to sensory feedback. We apply dynamical systems tools to understand several properties of a closed-loop respiratory control model, including the coexistence of normal and pathological breathing, robustness to changes in metabolic demand, spontaneous autoresuscitation in response to hypoxia, and the distinct mechanisms that underlie rhythmogenesis in the intact control circuit vs. the isolated, open-loop CPG.
机译:感官信息如何影响节奏产生的动力学在整个系统中各不相同,并且缺乏用于理解运动控制这一方面的一般原理。确定呼吸节律发生的起源具有挑战性,因为孤立考虑的中央回路中的机制可能与完整生物体中的机制不同。我们分析了结合中央模式发生器(CPG),Butera-Rinzel-Smith(BRS)模型以及肺力学,氧气处理和化学感应成分的闭环呼吸控制模型。我们证明1)将BRS模型神经元嵌入控制回路中会创建一个双稳态系统; 2)尽管闭环和开环(隔离)CPG系统都支持类似气喘的突发活动,但它们是通过不同的机制来实现的; 3)闭环中的化学感应反馈提高了对可变代谢需求的鲁棒性; 4)BRS模型电导提供了一种自动复苏机制,可从化学感觉反馈的短暂中断中恢复; 5)体外脑干CPG切片对低氧有短暂的爆发反应,其质量与计算机自复苏相似。闭环系统中的突发性和强直性尖峰的双稳态对应于正常分钟通气和血氧水平并以呼吸急促状的状态存在,并在病理上减少了分钟通气并严重降低了血氧,这与呼吸困难并存。通过施加缺氧或中断化学感觉反馈来破坏正常的呼吸节律,可使系统从紫红色状态转变为心动过速状态。我们使用几何奇异摄动理论来分析在分隔像呼吸暂停和呼吸急促的结局的边界处的系统动力学。> NEW&NOTEWORTHY 有节奏的生物过程面临的一个共同挑战是中央模式发生器的自适应调节( CPG)活动以响应感官反馈。我们使用动力学系统工具来了解闭环呼吸控制模型的若干属性,包括正常和病理性呼吸的并存,对代谢需求变化的鲁棒性,对缺氧的自发自发复苏以及基础节律性形成的独特机制。完整的控制电路与隔离的开环CPG的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号