首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries
【24h】

Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries

机译:用高能锂离子电池磷掺杂策略共调节富富富氧化物的表面和散装结构

获取原文
获取原文并翻译 | 示例
           

摘要

Li-rich layered materials, despite their high specific capacity up to 250 mA h g(-1), suffer from structural transformation either in the initial activation or after cycling, causing continuous voltage decay and capacity fading. Anion doping has been widely considered as a way to stabilize the intrinsic structure and improve the electrochemical performance of Li-rich materials, though with the pain of process complexity and limitation. Here, we report a simple co-precipitation method with a dual sedimentating agent to realize phosphor doping in both the surface and bulk. X-ray diffraction Rietveld refinement results indicate that the doped sample presents a larger lattice spacing than the normal sample and a Li3PO4 protective layer in situ forms on the surface. Synchrotron scanning transmission X-ray microscopy (STXM) reveals commendable homogeneity in the phase distribution between the surface and bulk in the doped sample. X-ray absorption near edge structure (XANES) shows a more homogeneous local chemical environment of the doped sample by investigating the Mn, Ni, and Co L-edges and O K-edge spectra. The doped sample displays a high discharge capacity of 295 mA h g(-1) with an initial coulombic efficiency of 90.5% at 0.1C, showing a high rate performance of 247 mA h g(-1) at 1C and a superior capacity retention of 73% after 500 cycles. Moreover, this doping strategy also inhibits the critical voltage decay of Li-rich materials during cycling. The prolonged structural evolution analysis demonstrates that phosphor doping can play a stabilizing role in Li-rich materials to restrain the transformation from layer to spinel.
机译:富含量的分层材料,尽管它们高达250 mA H(-1)的特定容量高达250 mA,但在初始激活或循环后患有结构转变,导致连续电压衰减和容量衰落。负离子掺杂已被广泛认为是一种方式,以稳定的内在结构,提高富锂材料的电化学性能,但随着工艺的复杂性和局限性疼痛。在这里,我们报告了一种具有双重沉淀剂的简单共沉淀方法,以在表面和散装中实现掺杂的磷光体。 X射线衍射的Rietveld精化结果表明,该样品掺杂呈现较大的晶格间距比正常样本,并在表面上原位形成Li3PO4保护层。同步扫描透射X射线显微镜(STXM)显示在掺杂样品中的表面和散装之间的相位分布中可称赞的均匀性。边缘结构(Xanes)附近的X射线吸收通过研究Mn,Ni和Co L边缘和O K边缘光谱显示掺杂样品的更均匀局部化学环境。掺杂的样品在0.1℃下初始库仑效率显示出高电位容量为295 mA hg(-1),初始库仑效率为90.5%,在1℃下表现出247 mA Hg(-1)的高速率性能和73的优异容量保留500次循环后%。此外,这种掺杂策略还抑制了循环期间锂富含材料的临界电压衰减。长期的结构演进分析表明,磷光体掺杂可以在富含锂材料中起稳定作用,以限制从层到尖晶石的转化。

著录项

  • 来源
  • 作者单位

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers 92 West Da Zhi St Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers 92 West Da Zhi St Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers 92 West Da Zhi St Harbin 150001 Heilongjiang Peoples R China;

    Canadian Light Source Inc Saskatoon SK S7N 2V3 Canada;

    Canadian Light Source Inc Saskatoon SK S7N 2V3 Canada;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers 92 West Da Zhi St Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers 92 West Da Zhi St Harbin 150001 Heilongjiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号