首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures
【24h】

Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures

机译:通过精确可调双尺度和三级微纳米结构的超细轴表面极高的Cassie-Baxter状态稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Superhydrophobic surfaces have been attracting considerable attention due to their potential applications in self-cleaning, anti-icing, water/oil separation, drag reduction, etc. However, to date, the problem of poor Cassie-Baxter (CB) state stability still remains a main reason constraining the commercialization applications of superhydrophobic surfaces. In the present study, we report a new type of superhydrophobic surface with tunable structural complexity (hierarchical level) and extremely high CB state stability synthesized by a hybrid method combining ultrafast laser ablation with chemical reaction. Two new hierarchical structures, a two-scale and a further developed triple-scale hierarchical structures, are fabricated. Moreover, the dependence of CB state stability on the hierarchical structural parameters is demonstrated experimentally and theoretically. Due to the increased hierarchical level and structural complexity, the critical Laplace pressure needed for losing the CB state (P-CCB) of the well-prepared triple-scale structure reaches up to 1450 Pa, which is the highest critical Laplace pressure P-CCB to the best of the authors' knowledge. The proposed hybrid method is simple and feasible for large scale fabrication. The formed micro/nano-structures with tunable hierarchical levels and excellent CB state stability are promising candidates for various applications in relevant fields.
机译:由于它们在自清洁,防冰,水/油分离,减阻等中的潜在应用,超疏水性表面一直吸引了相当大的关注。然而,迄今为止,差的卡西 - 巴克斯特(CB)状态稳定性仍然存在限制超疏水表面商业化应用的主要原因。在本研究中,我们报告了一种新型的超疏水表面,具有可调谐结构复杂性(层级)和极高的CB状态稳定性,通过混合方法与化学反应相结合的混合方法。制造了两个新的等级结构,双尺寸和进一步开发的三尺度分层结构。此外,通过实验和理论地说明CB状态稳定性对分层结构参数的依赖性。由于层级和结构复杂性增加,损失良好的三维结构的CB状态(P-CCB)所需的关键拉普拉斯压力达到1450Pa,这是最高关键的拉普拉斯压力P-CCB据作者的知识。所提出的混合方法对于大规模制造简单可行。具有可调谐分层水平的形成的微/纳米结构以及优异的CB状态稳定性是相关领域中各种应用的候选者。

著录项

  • 来源
  • 作者单位

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 10008 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号