首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes
【24h】

Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes

机译:结构 - 物业在局部结构和扩散探针中欣赏锂离子电池的纳米结构电极

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Microwave heating presents a faster, lower energy synthetic methodology for the realization of functional materials. Here, we demonstrate for the first time that employing this method also leads to a decrease in the occurrence of defects in olivine structured LiFe1-xMnxPO4. For example, the presence of antisite defects in this structure precludes Li+ diffusion along the b-axis leading to a significant decrease in reversible capacities. Total scattering measurements, in combination with Li+ diffusion studies using muon spin relaxation (mu(+) SR) spectroscopy, reveal that this synthetic method generates fewer defects in the nanostructures compared to traditional solvothermal routes. Our interest in developing these routes to mixed-metal phosphate LiFe1-xMnxPO4 olivines is due to the higher Mn2+/3+ redox potential in comparison to the Fe2+/3+ pair. Here, single-phase LiFe1-xMnxPO4 (x = 0, 0.25, 0.5, 0.75 and 1) olivines have been prepared following a microwave-assisted approach which allows for up to 4 times faster reaction times compared to traditional solvothermal methods. Interestingly, the resulting particle morphology is dependent on the Mn content. We also examine their electrochemical performance as active electrodes in Li-ion batteries. These results present microwave routes as highly attractive for reproducible, gram-scale syntheses of high quality nanostructured electrodes which display close to theoretical capacity for the full iron phase.
机译:微波加热呈现更快,较低的能量合成方法,用于实现功能材料。在这里,我们首次示出了使用该方法的第一次也导致橄榄石结构寿命的缺陷的发生减少。例如,在该结构中存在反烧伤缺陷沿着B轴的Li +扩散导致可逆容量的显着降低。总散射测量,与Li +扩散研究相结合使用MuOn自旋弛豫(MU(+)SR)光谱,表明与传统的溶剂热线相比,该合成方法在纳米结构中产生较少的缺陷。我们对开发这些磷酸盐的途径的兴趣是与Fe2 + / 3 +对相比的Mn 2 + / 3 +氧化还原电位越高。这里,通过微波辅助方法制备单相寿命1-XMNXPO4(x = 0,0.25,0.5,0.75和1)橄榄石,其与传统的溶剂热方法相比,允许多达4倍的反应时间更快。有趣的是,所得颗粒形态依赖于Mn含量。我们还将其电化学性能作为锂离子电池中的有源电极进行检查。这些结果将微波路径存在于可重复的高质量纳米结构电极的可再现,革兰氏型合成具有高度吸引力的高质量纳米结构电极,其显示靠近全铁相的理论能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号