...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Al-Sc dual-doped LiGe2(PO4)(3)- a NASICON-type solid electrolyte with improved ionic conductivity
【24h】

Al-Sc dual-doped LiGe2(PO4)(3)- a NASICON-type solid electrolyte with improved ionic conductivity

机译:Al-SC双掺杂LiGe2(PO4)(3) - 具有改进的离子电导率的Nasicon型固体电解质

获取原文
获取原文并翻译 | 示例

摘要

LiGe2(PO4)(3)(LGP), a NASICON-type solid electrolyte, has many advantages such as its superior electrochemical and thermal stability for use in all solid-state lithium batteries. However, its low ionic conductivity is one of the challenges that can hinder its practical application commercially. In this work, the influence of adding different amounts of scandium and aluminum on the Li(+)conductivity of LGP was investigated computationally and experimentally. Substituting 25% of Ge(4+)ions in the LGP structure with Al(3+)and/or Sc(3+)ions to obtain doped LGP in the form of Li1+x+yAlxScyGe2-x-y(PO4)(3), wherex+y= 0.5, led to more Li(+)ions in the 36f vacant sites (M-2) and resulted in enhanced ionic conductivity of the material. In both approaches, the highest bulk Li(+)conductivity of 5.826 mS cm(-1)was obtained for Li1.5Al0.33Sc0.17Ge1.5(PO4)(3)from the experimental measurement. The activation energy was also investigated theoretically using the nudged elastic band method, and the lowest value (0.279 eV) was obtained for this composition. Furthermore, the Li1+x+yAlxScyGe2-x-y(PO4)(3)electrolytes were synthesized using a melt-quenching method and subsequently transformed into a glass-ceramic material through heat treatment. X-ray diffraction, electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the structure, measure the Li(+)conductivity and determine the electrochemical window of the synthesized glass-ceramic material, respectively. There was a remarkable agreement between the computationally calculated and experimentally measured values of ionic conductivity, activation energy and electrochemical window. Finally, its applicability in a solid-state battery was tested, and it showed good electrochemical performance.
机译:LiGe2(PO4)(3)(LGP)(LGP)是一种NASICON型固体电解质,具有许多优点,例如其优异的电化学和热稳定性,用于所有固态锂电池。然而,其低离子电导率是可以在商业上妨碍其实际应用的挑战之一。在这项工作中,计算地和实验研究了在LGP的Li(+)电导率上增加了不同量的钪和铝的影响。用Al(3+)和/或SC(3+)离子用LGP结构中25%的GE(4+)离子用Al(3+)和/或Sc(3+)离子以Li1 + X + YalxScyge2-XY(PO4)(3)的形式获得掺杂的LGP ,其中+ y = 0.5,LED在36F空置位点(M-2)中的更多Li(+)离子,并导致材料的离子电导率提高。在这两种方法中,从实验测量中获得5.826ms cm(-1)的最高体积Li(+)电导率为5.826ms cm(-1),从实验测量中获得1.5(PO4)(3)。在理论上使用闪烁的弹性带法研究活化能量,并获得该组合物的最低值(0.279eV)。此外,使用熔融淬火法合成Li1 + X + yalxScyge2-X-Y(PO4)(3)电解质,随后通过热处理转化成玻璃陶瓷材料。 X射线衍射,电化学阻抗光谱和环状伏安法用于表征结构,测量Li(+)电导率并分别确定合成的玻璃陶瓷材料的电化学窗。在计算上计算和实验测量的离子电导率,激活能量和电化学窗口之间存在显着达成。最后,测试了在固态电池中的适用性,并显示出良好的电化学性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号