...
首页> 外文期刊>Journal of power sources >Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)(3) electrolyte
【24h】

Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)(3) electrolyte

机译:铝掺杂固态LiGe2(PO4)(3)电解质中锂离子电导率的第一性原理计算和实验测量的综合研究

获取原文
获取原文并翻译 | 示例

摘要

Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)(3) (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)(3) (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)(3), LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte. (C) 2015 Elsevier B.V. All rights reserved.
机译:使用第一原理密度泛函理论(DFT)计算与实验测量相结合,了解对通过将Al3 +掺杂到固体LiGe2(PO4)(3)(LGP)电解质中导致锂离子电导率显着提高的基本机理的理解。我们的结果表明,Al3 +取代LiGe2(PO4)(3)(LGP)中的Ge4 +与aliovalent(Li1 + xAlxGe2-x(PO4)(3),LAGP)可以将锂离子电导率提高大约四个数量级。为了揭示原子起源,我们使用DFT计算和微动弹性带方法计算了Lip在LGP和LAGP材料中的可能的扩散路径,并发现LAGP对于Li的活化势垒低至LGP的34%时,还有更多的Li传输路径。值得注意的是,这些新的原子通道表现出微妙的静电环境,有助于至少两个Li原子的协同运动。从头算起的分子动力学即可预测LAGP系统的锂离子电导率,这是在内部制作的样品上达成的惊人的实验测量结果。因此,我们认为由铝价铝离子掺杂到LGP引起的过量Li不仅导致Li浓度增加,而且还开辟了新的导电路径,从而显着降低了活化能,从而提高了LAGP固态电解质的离子电导率。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号