首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation
【24h】

Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation

机译:在令人禁止营养沼泽中的五个温度处理下的土壤热动态,雪覆盖和冻结深度:数据同化的约束预测

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers, the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0 degrees C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.
机译:精确模拟土壤热动态对于土壤生物地球化学反应对气候变化的实际预测至关重要。为了促进气候和环境变化的云杉和泥炭地反应的生态预测,我们通过核算土壤层和冻结过程中的地表能预算,雪动力学和传热,将土壤温度模块纳入地面生态系统(TECO)模型。 -waw事件。在模型用于预测之前,我们通过数据同化调节TECO,并通过数据同化进行了详细的土壤温度和雪深。受约束模型从不同土壤层,雪深度,降雪时间和雪花的幅度和冰冻深度的定时的受约束模型再现变化。在+0.0,+ 2.25 + 4.5,+ 6.75 + 6.75 + 6.75 + 6.75和+ 9.0摄氏度下,六层土壤层,雪和冻结深度的土壤温度动力学的调节TECO预测概率分布。空气变暖导致土壤温度升高强劲由于冬天的雪和冰,在夏天而不是冬天。夏季,土壤温度在夏季浅层土壤温度越来越多地增加空气变暖。整个生态系统变暖(泥炭+空气暖和)一般降低了雪和冷冻深度。预测雪和冰冻深度的准确性依赖于天气强迫的精度。预测土壤温度但雪和冷冻深度的不确定性较小。及时且有效的土壤热预测,通过将基于过程的理解和详细观察结合的数据同化限制,为未来的生物地球化学循环更好地预测提供边界条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号