首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization
【24h】

Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

机译:在ST. Helens(2004-2008)中约束Magmatic系统,使用贝叶斯逆转与基于物理的模型,包括气体逸出和结晶

获取原文
获取原文并翻译 | 示例
           

摘要

Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5wt%) total volatiles and that the magma permeability scale is well constrained at approximate to 10(-11.4)m(2) to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.
机译:基于物理的火山喷发模型跟踪导管过程作为深度和时间的功能。当在逆势中使用时,这些模型允许集成不同的地质和地球物理数据集来限制岩浆系统的重要参数。我们开发了一个1-D稳态导管模型,用于散发爆发,包括通过导管的平衡结晶和气体输送,并与2005年圣海伦山的准稳态圆顶增长阶段进行比较。依赖于压力依赖性结晶导致的粘度增加从粘性流动到导管边距摩擦滑动的自然过渡。由于它们对岩浆密度的影响,爆发的质量磁通量强烈取决于壁岩和岩浆渗透率。包括横向和垂直的气体传输均显示在增加岩浆渗透率时产生群众助焊剂中产生非单调行为的竞争效果。在贝叶斯反演中使用这种基于物理的模型,我们将数据集与St. Helens的挤出通量和地震深度等与岩石数据一起联系起来,以估计未知的模型参数,包括岩浆室压力和含水量,岩浆渗透常数,导管半径和沿导管墙壁的摩擦。即使使用这种相对简单的模型和有限的数据,我们也可以在重要的模型参数上获得改进的约束。我们发现岩浆室具有较低(<5wt%)总挥发物,并且岩浆渗透率尺度近似受到10(-11.4)m(2)以重现观察到的圆顶岩孔隙率。与先前的结果相比,需要更高的岩浆超压和更低的壁摩擦来补偿增加的粘性电阻,同时保持在观察到的值下挤出速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号