首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly
【24h】

Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly

机译:使用加热器/夹组件将气相色谱的高温范围与全硅微芯片柱延伸

获取原文
获取原文并翻译 | 示例
           

摘要

Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375 degrees C and routine operation up to 300 degrees C. The compression clamp was constructed of a low expansion alloy, Kovar (TM), to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9 m long microcolumn with rectangular cross section of 158 mu m x 80 mu m, which approximately matches a 100 mu m i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed
机译:气相色谱(GC)仪器的小型化是感兴趣的,因为它解决了与紧凑性,可移植性和现场应用有关的当前和未来问题。虽然在GC中继续报告渐进式进步,但在微芯片中制造的列(本文称为“微芯片柱”),目前的性能远非可接受。与传统GC相比的这种较低的性能是由于诸如非圆柱通道的角落中的固定相的因素,对敏感化合物对不完全失活的表面,较短的柱长且小于喷射器和检测器的最佳接口的吸附。在这项工作中,开发了一种利用微芯片柱的GC系统解决了后一种挑战,即微芯片与喷射器和检测器的微芯片接口。构造微芯片压缩夹具以加热微芯片(即,初级加热器),并将喷射器和检测器熔融二氧化硅界面管密封到微芯片通道的入口和出口,最小塔的死体积。该夹具允许偶尔操作高达375℃,常规操作高达300℃。压缩夹具由低膨胀合金,Kovar(TM)构成,以最小化由于界面在重复的热循环期间的热膨胀不匹配而泄漏,它在几个月内测试了超过一百个注射而不形成泄漏。 5.9米长的微柱,矩形横截面为158 mu m x 80 mu m,大致匹配100 mu m i.d.圆柱形熔融二氧化硅柱,在硅晶片中使用深反应离子蚀刻(Drie)和高温熔合粘合来制造。最后,将通道静态地用1%乙烯基,5%苯基,94%甲基吡咯烷氧烷固定相涂覆。在两个温度下,使用该系统对C10-C40正烷烃和商业柴油样品进行高温分离

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号