首页> 外文期刊>Journal of Agricultural and Food Chemistry >Converting Peanut Protein Biomass Waste into 'Double Green' Meat Substitutes Using a High-Moisture Extrusion Process: A Multiscale Method to Explore a Process for Forming a Meat-Like Fibrous Structure
【24h】

Converting Peanut Protein Biomass Waste into 'Double Green' Meat Substitutes Using a High-Moisture Extrusion Process: A Multiscale Method to Explore a Process for Forming a Meat-Like Fibrous Structure

机译:使用高湿度挤出工艺将花生蛋白生物质废物转化为“双绿色”肉类替代品:多尺度方法,用于探讨形成肉类纤维结构的过程

获取原文
获取原文并翻译 | 示例
           

摘要

Converting peanut protein biomass waste into environmentally friendly meat substitutes by a high-moisture extrusion process can help solve both resource and waste problems and be "double green". A multiscale method combined with some emerging techniques such as atomic force microscopy-based infrared spectroscopy and X-ray microscopy was used to make the whole extrusion process visible to show the process of forming a meat-like fibrous structure using two-dimensional and three-dimensional perspectives. The results showed that the protein molecules underwent dramatic structural changes and unfolded in the extruder barrel, which created favorable conditions for molecular rearrangement in the subsequent zones. It was confirmed that the meat-like fibrous structure started to form at the junction of the die and the cooling zone and that this structure was caused by the phase separation and rearrangement of protein molecules in the cooling zone. Moreover, the interactions between hydrogen bonds and disulfide bonds formed in the cooling zone maintained the meat-like fibrous structure with an alpha-helix > beta-sheet > beta-turn > random coil. Of the two main peanut proteins, arachin played a greater role in forming the fibrous structure than conarachin, especially those subunits of arachin with a molecular weight of 42, 39, and 22 kDa.
机译:由高水分挤压工艺转换花生蛋白生物质废弃物到环保的替代肉可以帮助解决双方的资源和浪费的问题,是“双绿”。使用多尺度方法与一些新兴技术,例如原子力显微镜基于红外光谱和X射线显微术相结合,使整个挤出过程可见,以显示一种利用二维和三维肉状纤维结构的过程维观点。结果表明:该蛋白分子发生了巨大的结构变化和在挤出机机筒展开,其创造了有利条件在后续区的分子重排。据证实,肉状纤维结构体开始形成在管芯的交界处和冷却区,并且该结构是由相分离和蛋白质分子的重排在冷却区引起的。另外,氢键和形成在所述冷却区的二硫键之间的相互作用保持肉状与α-螺旋>β-折叠>β-转角>无规卷曲的纤维结构。两个主要的花生蛋白,花生球蛋白起到形成纤维状结构比conarachin更大的作用,尤其是那些具有分子量为42,39,和22 kDa的花生球蛋白的亚基。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号