首页> 外文期刊>Developmental biology >Wavy movements of epidermis monocilia drive the neurula rotation that determines left-right asymmetry in ascidian embryos
【24h】

Wavy movements of epidermis monocilia drive the neurula rotation that determines left-right asymmetry in ascidian embryos

机译:表皮的波浪运动Monocilia驱动了神经拉的旋转,该旋转决定了阿立迪亚胚胎中的左右不对称

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Tadpole larvae of the ascidian, Halocynthia roretzi, show morphological left-right asymmetry in the brain structures and the orientation of tail bending within the vitelline membrane. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and then this rotation stops when the left side of the embryo is oriented downwards. Contact of the left-side epidermis with the vitelline membrane promotes nodal gene expression in the left-side epidermis. This is a novel mechanism in which rotation of whole embryos provides the initial cue for breaking left-right symmetry. Here we show that epidermal monocilia, which appear at the neurula rotation stage, generate the driving force for rotation. A ciliary protein, Arll3b, fused with Venus YFP was used for live imaging of ciliary movements. Although overexpression of wild-type Arll3b fusion protein resulted in aberrant movements of the cilia and abrogation of neurula rotation, mutant Arll3b fusion protein, in which the GTPase and coiled-coil domains were removed, did not affect the normal ciliary movements and neurula rotation. Epidermis cilia moved in a wavy and serpentine way like sperm flagella but not in a rotational way or beating way with effective stroke and recovery stroke. They moved very slowly, at 1/7 Hz, consistent with the low angular velocity of neurula rotation (ca. 43°/min). The tips of most cilia pointed in the opposite direction of embryonic rotation. Similar motility was also observed in Ciona robusta embryos. When embryos were treated with a dynein inhibitor, Ciliobrevin D, both ciliary movements and neurula rotation were abrogated, showing that ciliary movements drive neurula rotation in Halocynthia. The drug also inhibited Ciona neurula rotation. Our observations suggest that the driving force of rotation is generated using the vitelline membrane as a substrate but not by making a water current around the embryo. It is of evolutionary interest that ascidians use ciliary movements to break embryonic left-right symmetry, like in many vertebrates. Meanwhile, ascidian embryos rotate as a whole, similar to embryos of non-vertebrate deuterostomes, such as echinoderm, hemichordate, and amphioxus, while swimming.
机译:的海鞘,Halocynthia roretzi的蝌蚪幼虫,示出了在脑结构形态左右不对称和尾部的卵黄膜内弯曲取向。神经胚胚胎沿逆时针方向的前后轴旋转,然后当胚胎的左侧向下面向该旋转停止。与卵黄膜左侧表皮接触促进了左侧表皮节点基因表达。这是一种新的机制,其中全胚胎的旋转提供了用于破碎左右对称的初始线索。在这里,我们表明,表皮monocilia,其出现在神经胚旋转舞台,产生旋转的驱动力。睫状蛋白,Arll3b,金星YFP融合用于睫状运动的实时成像。虽然野生型Arll3b融合蛋白的过表达导致了纤毛和神经胚旋转,突变Arll3b融合蛋白,其中,所述GTP酶和卷曲螺旋结构域去除的废除的异常运动,不影响正常的纤毛运动和神经胚转动。表皮纤毛像精子鞭毛波浪和蜿蜒的方式,但不符合有效行程和恢复中风旋转方式或殴打的方式移动。他们走得很慢,在1/7赫兹,与神经胚旋转低角速度(约43°/ min)的相一致。最纤毛的提示指出在胚胎旋转方向相反。类似的动力也在玻璃海鞘胚胎罗布斯塔观察。当胚与动力蛋白抑制剂处理,Ciliobrevin d,既纤毛运动和神经胚旋转被废止,显示出睫状运动带动Halocynthia神经胚转动。该药物也能抑制神经胚玻璃海鞘旋转。我们的观察表明,旋转驱动力被使用卵黄膜作为底物而不是通过使周围的胚胎水电流产生。这是进化的兴趣是海鞘使用纤毛运动在许多脊椎动物胚胎突破左右对称,等等。同时,海鞘胚胎旋转作为一个整体,类似于非脊椎动物口动物,如棘皮动物,半索动物门,和文昌鱼的胚胎,而游泳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号