...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications
【24h】

Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications

机译:基于二维半导体过渡金属基硫酸化物的水分裂应用异质结构

获取原文
获取原文并翻译 | 示例

摘要

Recent research and development is focused in an intensive manner to increase the efficiency of solar energy conversion into electrical energy via photovoltaics and photo-electrochemical reactions. Electrocatalytic and photocatalytic water splitting into hydrogen and oxygen is a promising and emerging technology. Heterogeneous nanostructures based on semiconductor materials have attracted much attention to be used as catalysts, co-catalysts, photocatalysts and photoabsorbers. Development of transition metal dichalcogenide (TMDC) semiconductors with two dimensional (2D) layered structures and peculiar physical and chemical properties are playing a pivotal role in the heterogeneous photocatalytic hydrogen evolution (PHE) reaction. The energy band gap tuning with the thickness of the layers and heterojunction interface formation have given an opportunity to design and develop combinations of both photocatalysts and co-catalysts using semiconductor TMDCs. This contribution summarizes the recent investigations on the 2D semiconductor TMDC (MoS2, WS2, MoSe2 and WSe2) based heterogeneous nanostructures as efficient materials for photocatalytic water splitting applications to produce hydrogen. The literature survey clearly shows that more than 80% of the researchers in this field have worked on MoS2-based heterogeneous nanocomposites, as it is the 2(nd) most studied material after graphene. It is also evident that among the materials used so far for the PC HER activity, MoS2-based heterogeneous nanocomposites are on top with the highest hydrogen evolution rate and stability. Since the physical and chemical properties of the members are identical, the future research and development would focus on the manipulation of the rest of the TMDC members to achieve the future needs of clean and sustainable energy production.
机译:最近的研发以密集的方式集中,以通过光伏和光电化学反应提高太阳能转换成电能的效率。电催化和光催化水分解成氢气和氧气是一种有前途和新兴的技术。基于半导体材料的异质纳米结构引起了许多关注用作催化剂,助催化剂,光催化剂和光吸收剂。具有二维(2D)层状结构的过渡金属二甲基化物(TMDC)半导体的研制在异质光催化氢进化(PHE)反应中起着枢轴作用。通过层的厚度和异质结界面形成的能带隙调节已经有机会使用半导体TMDS设计和开发光催化剂和助催化剂的组合。该贡献总结了基于2D半导体TMDC(MOS2,WS2,MOSE2和WSE2)的异质纳米结构的最近研究,作为用于产生氢的光催化水分裂应用的有效材料。文献调查清楚地表明,该领域的超过80%的研究人员已经在基于MOS2的异构纳米复合材料上工作,因为它是石墨烯之后的2(ND)最多研究的材料。还显然,到目前为止用于PC她的活性的材料中,基于MOS2的异构纳米复合材料是最高的氢进化率和稳定性的顶部。由于成员的物理和化学性质是相同的,因此未来的研发将重点关注其余的TMDC成员的操纵,以实现清洁和可持续能源生产的未来需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号