首页> 外文期刊>The Journal of Physiology >Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics
【24h】

Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics

机译:离子通道动力学快速表征的正弦电压协议

获取原文
获取原文并翻译 | 示例
           

摘要

Key points Ion current kinetics are commonly represented by current–voltage relationships, time constant–voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square‐wave voltage clamps, we fitted a model to the current evoked by a novel sum‐of‐sinusoids voltage clamp that was only 8?s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square‐wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell–cell variability in current kinetics for the first time. Abstract Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics – the voltage‐dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8?second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5?minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell‐specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell–cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches.
机译:关键点离子电流动力学通常由电流 - 电压关系,时间恒压关系以及随后安装的数学模型表示。这些实验需要大量的时间,这意味着它们很少在同一细胞中进行。我们将模型拟合到电流的模型,其新颖的正弦型电压夹仅为8Ω秒。可以在单个单元格内多次执行的短协议将提供许多新的机会,以测量通过不断变化的条件影响离子电流动力学的影响。新模型预测了传统方波协议下的电流良好,具有比文学模型更好地预测潜水。新颖的生理相关的动作潜在夹具下的电流非常良好。短正弦方案允许模型完全适合单个细胞,允许我们首次检查当前动力学中的细胞 - 细胞变异性。摘要了解离子电流的作用至关重要,以预测不同情景中药物和突变的作用,从而指导心脏,脑和其他电生理系统中的临床干预。我们预测离子电流如何促成蜂窝电流的能力依赖性地取决于我们离子通道动力学的表征 - 开放,闭合和灭活通道状态之间的电压依赖性转变率。我们提出了一种用于快速探索和表征离子通道动力学的新方法,作为示例,将其施加到HERG钾通道,目的是产生离子电流的定量预测表示。我们将数学模型拟合到由过表达HERG1A的CHO细胞中的新型8?第二正弦电压夹具引起的电流。然后使用该模型以响应于进一步的协议来预测相同电池中的录制超过5?几分钟:一系列传统的方阶电压钳,以及包括生理相关动作电位的集合的新电压夹具。我们证明我们可以使预测的细胞特异性模型优于来自许多不同单元的平均数据的使用,从而检查门控的变化负责当前动力学中的细胞间变异性。我们的技术允许从单个细胞快速收集一致和高质量的数据,并产生比传统方法更具预测的数学离子通道模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号