首页> 外文期刊>The Journal of the Acoustical Society of America >A transverse isotropic equivalent fluid model combining both limp and rigid frame behaviors for fibrous materials
【24h】

A transverse isotropic equivalent fluid model combining both limp and rigid frame behaviors for fibrous materials

机译:横向各向同性等效流体模型,纤维材料的跛行和刚性框架行为

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Due to the manufacturing process, some fibrous materials like glasswool may be transversely isotropic (TI): fibers are mostly parallel to a plane of isotropy within which material properties are identical in all directions whereas properties are different along the transverse direction. The behavior of TI fibrous material is well described by the TI Biot's model, but it requires one to measure several mechanical parameters and to solve the TI Biot's equations. This paper presents an equivalent fluid model that can be suitable for TI materials under certain assumptions. It takes the form of a classical wave equation for the pressure involving an effective density tensor combining both limp and rigid frame behaviors of the material. This scalar wave equation is easily amenable to analytical and numerical treatments with a finite element method. Numerical results, based on the proposed model, are compared with experimental results obtained for two configurations with a fibrous material. The first concerns the absorption of an incident plane wave impinging on a fibrous slab and the second corresponds to the transmission loss of a splitter-type silencer in a duct. Both configurations highlight the effect of the sample orientation and give an illustration of the unusual TI behavior for fluids. (C) 2018 Acoustical Society of America.
机译:由于制造过程,一些纤维材料如玻璃螺杆可以横向各向同性(Ti):纤维大致平行于各向同性的平面,其中材料特性在所有方向上相同,而特性沿横向不同。 Ti纤维材料的行为由Ti Biot模型很好地描述,但它需要一个来测量几个机械参数并解决Ti Biot方程。本文呈现了一种等效的流体模型,可在某些假设下适用于Ti材料。它采用涉及有效密度张量的压力的经典波浪方程的形式,其组合材料的跛行和刚性框架行为。该标量波动方程易于允许具有有限元方法的分析和数值处理。基于所提出的模型的数值结果与用于两种具有纤维材料的配置的实验结果进行比较。首先涉及撞击纤维板的入射平面波的吸收,并且第二次对应于管道中分离器型消音器的传输损耗。这两种配置都突出了样品方向的效果,并透露了流体的不寻常的Ti行为。 (c)2018年声学学会。

著录项

  • 来源
  • 作者单位

    Inst Super Mecan Paris SUPMECA Lab Quartz EA 7393 3 Rue Fernand Hainaut F-93407 St Ouen France;

    Inst Super Mecan Paris SUPMECA Lab Quartz EA 7393 3 Rue Fernand Hainaut F-93407 St Ouen France;

    Univ Technol Compiegne Sorbonne Univ CNRS Lab Roberval UMR 7337 CS 60319 F-60203 Compiegne France;

    Univ Technol Compiegne Sorbonne Univ CNRS Lab Roberval UMR 7337 CS 60319 F-60203 Compiegne France;

    Univ Technol Compiegne Sorbonne Univ CNRS Lab Roberval UMR 7337 CS 60319 F-60203 Compiegne France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 声学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号