首页> 外文期刊>The Journal of Organic Chemistry >Mechanistic Study of Manganese-Catalyzed C-H Bond Functionalizations: Factors Controlling the Competition between Hydroarylation and Cyclization
【24h】

Mechanistic Study of Manganese-Catalyzed C-H Bond Functionalizations: Factors Controlling the Competition between Hydroarylation and Cyclization

机译:锰催化的C-H键官能化的机械研究:控制水序列竞争与环化的因素

获取原文
获取原文并翻译 | 示例
           

摘要

The Mn-catalyzed C-H functionalization of indoles with allenes developed by Rueping and co-workers provides an efficient access to various alkenylated indoles and substituted pyrroloindolones. Herein, we present a systematic computational study to understand the mechanism and origins of substrate-controlled chemoselectivity of the C-H functionalization reactions (hydroarylation vs cascade cyclization). For the disubstituted allene system, the computed mechanism consists of three main phases: C-H activation, allene migratory insertion, and protonation giving the hydroarylation product. All of these steps are feasible, in agreement with the good yield under the mild experimental conditions. On the other hand, for the trisubstituted allene system, hydroarylation is suppressed due to the higher energy barrier for the protonation step arising from the disfavored ligand-substrate steric repulsions between the carboxide ligand and the substituent group in the allene substrate; our computational results demonstrate that, after the allene insertion leading to a seven-membered cyclometalated intermediate, it undergoes a reaction pathway involving sequential "ketone to enol" isomerization, a 1,4-heteroaryl shift, and beta-methoxyl elimination giving the pyrroloindolone product. In contrast, this isomerization - heteroaryl shift - beta-methoxyl elimination process is unworkable in the disubstituted allene system, because the protonation step takes place more favorably owing to the lack of ligand-substrate steric interactions. The findings taken together give an insight into the role of the ligand-substrate interactions in directing the competitive pathways and differentiating the energies of key transition states by steric repulsions.
机译:与由Rueping开发丙二烯和同事的吲哚的锰催化的C-H官能化提供了各种链烯基化的吲哚和取代pyrroloindolones一个有效的访问。在此,我们提出了系统的计算研究,以了解C-H官能化反应的基质控制化学选择性的机制和起源(加氢核性VS级联环化)。对于二磺的提单系统,计算的机制包括三个主要阶段:C-H激活,联烯迁移插入和质子化给予水红产物。所有这些步骤都是可行的,与温和的实验条件下的良好产量一致。另一方面,对于三取代的联烯系统,由于来自甲醛配体和提名基质之间的取代基与来自烯烯基材中的取代基之间的质子化步骤的能量屏障较高,因此抑制了水罗基化;我们的计算结果表明,在苯烯插入后导致七元环级中间体,它经历了涉及顺序“酮至烯醇”异构化的反应途径,1,4-杂芳基转变,并β-甲氧基消除给予吡咯啉酮产物。相比之下,这种异构化 - &杂芳基转移 - & β-甲氧基消除方法在二烯异烯系统中是不可行的,因为由于缺乏配体 - 衬底空间相互作用,质子化步骤更有利地进行。共同的发现介绍了配体 - 底物相互作用在引导竞争途径并通过空间排斥来区分关键过渡状态的能量的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号