首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Photochemistry and Electron Transfer Kinetics in a Photocatalyst Model Assessed by Marcus Theory and Quantum Dynamics
【24h】

Photochemistry and Electron Transfer Kinetics in a Photocatalyst Model Assessed by Marcus Theory and Quantum Dynamics

机译:Marcus理论和量子动态评估光催化剂模型中的光化学和电子转移动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The present computational study aims at unraveling the competitive photoinduced electron transfer (ET) kinetics in a supramolecular photocatalyst model. Detailed understanding of the fundamental processes is essential for the design of novel photocatalysts in the scope of solar energy conversion that allows unidirectional ET from a light-harvesting photosensitizer to the catalytically active site. Thus, the photophysics and the photochemistry of the bimetallic complex RuCo, [(bpy)(2)Ru-II(tpphz)-Co-III(bpy)(2)](5+), where excitation of the ruthenium(II) moiety leads to an ET to the cobalt(III), were investigated by quantum chemical and quantum dynamical methods. Time-dependent density functional theory (TDDFT) allowed us to determine the bright singlet excitations as well as to identify the triplet states involved in the photoexcited relaxation cascades associated with charge-separation (CS) and charge-recombination (CR) processes. Diabatic potential energy surfaces were constructed for selected pairs of donor-acceptor states leading to CS and CR along linear interpolated Cartesian coordinates to study the intramolecular ET via Marcus theory, a semiempirical expression neglecting an explicit description of the potential couplings and quantum dynamics (QD). Both Marcus theory and QD predict very similar rate constants of 1.55 x 10(12) - 2.24 x 10(13) s(-1) and 1.21 x 10(13)-7.59 x 10(13) s(-1) for CS processes, respectively. ET rates obtained by the semiempirical expression are underestimated by several orders of magnitude; thus, an explicit consideration of electronic coupling is essential to describe intramolecular ET processes in RuCo.
机译:目前的计算研究旨在在超分子光催化剂模型中解开竞争光照电子转移(ET)动力学。详细了解基本流程对于在太阳能转换范围内的新型光催化剂设计至关重要,这允许从催化活性位点从光收集光敏剂的单向等。因此,光学药物和双金属复合Ruco的光化学,[(BPY)(2)Ru-II(TPPHZ)-III(BPY)(2)](5+),其中钌(II)激发通过量子化学和量子动态方法研究了部分致钴(III)的ET(III)。时间依赖性密度泛函理论(TDDFT)允许我们确定明亮的单线激励以及识别与电荷分离(CS)和电荷 - 重组(Cr)工艺相关的光屏蔽弛豫级联涉及的三重态状态。为选定的供体 - 受体状态构建型尿布潜在能量表面,其导致CS和CR的线性内插笛卡尔坐标,以通过Marcus理论研究血管分子ET,忽略了忽略了潜在耦合和量子动态的明确描述(QD) 。 Marcus理论和QD均可预测CS的1.55×10(12) - 2.24×10(13)秒(-1)和1.21×10(13)-7.59×10(13)S(-1)的非常相似的速率常数分别处理。通过半透镜表达获得的et率低估了几个数量级;因此,对电子偶联的明确考虑对于描述Ruco中的氨纶ET过程至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号