首页> 外文学位 >I. Quantum dissipation theory with application to electron transfer. II. Protein folding kinetics and thermodynamics: A mean-field Ising model.
【24h】

I. Quantum dissipation theory with application to electron transfer. II. Protein folding kinetics and thermodynamics: A mean-field Ising model.

机译:一,量子耗散理论在电子转移中的应用二。蛋白质折叠动力学和热力学:平均场伊辛模型。

获取原文
获取原文并翻译 | 示例

摘要

This thesis consists of two parts. Part I is related to the subject in theoretical quantum statistical dynamics, while Part II concerns about the statistical mechanics approach to protein folding problems.; In Part I, we report our development of quantum dissipation theory (QDT) and applications. In the aspect of theoretical development, we construct various second-order formulations in the weak system-bath coupling regime, and further an exact theory applicable to arbitrary non-Markovian bath interaction. We also develop an exact, nonperturbative electron transfer theory, and elucidate some important issues, such as he quantum solvation effect in relation to reaction mechanism, and the complex dependence of both kinetics and thermodynamics on solvent environment. In the application aspect, we consider the optical spectroscopy and laser control of molecular dynamics, besides the electron transfer problems. The details of Part I are as follows.; Chapter 1 presents an overview on the early development of quantum dissipation theory, together with some basic knowledge and techniques on non-dissipative quantum mechanics.; In chapter 2, besides the well-established linear response theory and fluctuation-dissipation theorem, we construct also the exact theory of driven Brownian oscillator (DBO). Considered here is a harmonic system, coupled linearly with an arbitrary harmonic bath and an arbitrary external field. The exact DBO results and their implications will be exploited later in the development of approximated QDT formalism in general. Propose in this chapter is also a parameterization scheme for the efficient treatment of non-Markovian interaction bath effects on the reduced system dynamics, both approximate and exact, to be developed soon.; In chapter 3, we report our development on various complete second-order QDT (CS-QDT) formalisms. In particular, we propose a novel CS-QDT construction, in which the dissipation superoperator is separated into field-free and field-dressed parts, and then treat the former in a memory-free prescription while the latter in terms of memory kernel. Both the initial system-bath coupling and the correlated non-Markovian dissipation and external field drive effects are treated properly within the second-order level. Various forms of CS-QDT differ at their resummation schemes that partially include high order system-bath coupling effects. On the basis of the comparison with the exact DBO results, together with the consideration of numerical stability and efficiency, the aforementioned unconventional CS-QDT form is found to be the overall best among various approximation schemes. Applications of the CS-QDT are made to some optical response and control of molecular dynamics processes.; In chapter 4, we construct an exact QDT, via direct calculus oil Feynman-Vernon dissipation functionals. The resulting theory, in terms of hierarchically coupled differential equations of motion (EOM) instead of path integral, facilitates the numerical study of quantum dissipation that is in general nonperturbative and non-Markovian. We further construct the equivalent continued fraction formalism, allowing the quantum dissipation be resolved efficiently in an inward-recursive manner.; Chapter 5 focuses on our revisit of the elementary electron transfer (ET) process, on the basis of the exact reduced density matrix dynamics theory developed in chapter 4. An analytical and exact expression for the ET rate in Debye solvents at finite temperature is further arrived by using the Dyson equation technique. Not only does it recover the celebrated Marcus' inversion and Kramers' turnover behaviors of the ET reaction rate, the new theory also predicts some interesting and unexplored characteristics of equilibrium thermodynamics functions as their dependence on the solvent environment. The nature solvation, quantum versus classical, is also investigated in its relation to the distinct ET mechanics.; The concluding remarks on Part
机译:本文分为两部分。第一部分与理论量子统计动力学有关,而第二部分则涉及解决蛋白质折叠问题的统计力学方法。在第一部分中,我们报告了量子耗散理论(QDT)的发展和应用。在理论发展方面,我们构造了弱系统-浴耦合状态下的各种二阶公式,并进一步建立了适用于任意非马氏浴相互作用的精确理论。我们还建立了精确的,无扰动的电子转移理论,阐明了一些重要问题,例如与反应机理相关的量子溶剂化效应以及动力学和热力学对溶剂环境的复杂依赖性。在应用方面,除了电子转移问题外,我们还考虑了光谱学和分子动力学的激光控制。第一部分的细节如下。第1章概述了量子耗散理论的早期发展,以及有关非耗散量子力学的一些基本知识和技术。在第二章中,除了完善的线性响应理论和波动耗散定理之外,我们还构造了驱动布朗振荡器的精确理论。这里考虑的是谐波系统,它与任意谐波浴和任意外部场线性耦合。 DBO的确切结果及其含义将在以后的一般QDT形式主义开发中加以利用。本章中还提出了一种参数化方案,用于有效处理非马尔可夫相互作用浴对降低的系统动力学(近似和精确)的影响,即将开发。在第3章中,我们报告了我们在各种完整的二阶QDT(CS-QDT)形式上的发展。特别是,我们提出了一种新颖的CS-QDT构造,其中将耗散超级运算符分为无场部分和场修整部分,然后以无记忆处方处理前者,而将后者以记忆核形式对待。初始系统-浴耦合以及相关的非马尔可夫耗散和外部场驱动效应都在二阶水平内得到了适当处理。各种形式的CS-QDT的恢复方案有所不同,其中部分包括高阶系统-浴耦合效应。在与精确的DBO结果进行比较的基础上,再考虑数值稳定性和效率,发现上述非常规CS-QDT形式在各种近似方案中总体上是最佳的。 CS-QDT在某些光学响应和分子动力学过程控制中的应用。在第4章中,我们通过直接演算Feynman-Vernon耗散函数构造了一个精确的QDT。由此产生的理论,按照运动的层级耦合微分方程(EOM)而不是路径积分,可以简化量子耗散的数值研究,而量子耗散通常是非扰动的和非马尔可夫的。我们进一步构造了等效的连续分数形式,允许量子耗散以向内递归的方式有效地解决。第5章重点讨论了我们在第4章中开发的精确的降低密度矩阵动力学理论的基础上对基本电子转移(ET)过程的重新研究。进一步得出了在限定温度下Debye溶剂中ET速率的解析和精确表达式。通过使用戴森方程技术。新理论不仅恢复了著名的ET反应速率的马库斯反演和克拉默斯的周转行为,而且还预测了平衡热力学功能的一些有趣且尚未探索的特征,因为它们依赖于溶剂环境。还研究了量子溶剂化与经典溶剂化的自然溶剂化与不同的ET机理的关系。结束语部分

著录项

  • 作者

    Mo, Yan.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Chemistry Physical.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:39:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号