...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Ab lnitio Molecular Dynamics Study of Dissociative Chemisorption and Scattering of CO2 on Ni(100): Reactivity, Energy Transfer, Steering Dynamics, and Lattice Effects
【24h】

Ab lnitio Molecular Dynamics Study of Dissociative Chemisorption and Scattering of CO2 on Ni(100): Reactivity, Energy Transfer, Steering Dynamics, and Lattice Effects

机译:AB LNITIO在Ni(100)中二氧化碳的分离化学吸附和散射分子动力学研究:反应性,能量转移,转向动力学和晶格效应

获取原文
获取原文并翻译 | 示例
           

摘要

The dissociative chemisorption of polyatomic molecules on metal surfaces has attracted much interest in recent years due to their industrial and fundamental importance. Comparing with extensively studied systems such as methane and water, however, dissociative chemisorption of CO2 which is important for CO2 activation, has so far received scant attention. We recently reported vibrational enhancement of the dissociative chemisorption of CO, on a rigid Ni(100) surface using a nine-dimensional potential energy surface (PES) based on a large number of density functional theory calculations. However, that PES is incapable of describing the lattice motion and energy transfer between this heavy molecule and the surface. To overcome these limitations, we present here ab initio molecular dynamics results for CO2 scattering and dissociation. In addition to formation of adsorbed O and CO, CO2 is found to have a large trapping probability in a chemisorption well, along with a substantial amount of energy loss to surface phonons. The lattice and dynamical steering effects are found to be quite different from what have been observed for direct dissociative chemisorption of methane and water.
机译:由于其工业和基本重要性,近年来,金属表面上的多元素分子的分离化学吸引了很多兴趣。然而,与广泛研究的系统(如甲烷和水)相比,二氧化碳的二氧化碳的分离化学吸附于二氧化碳活化,迄今为止,对CO 2活化很重要。我们最近报道了使用基于大量密度的函数理论计算的九维势能表面(PES)在刚性Ni(100)表面上的CO的解离化学吸附的振动增强。然而,该PE无法描述该重分子和表面之间的晶格运动和能量转移。为了克服这些限制,我们在此呈现AB Initio分子动力学导致CO2散射和解离。除了形成吸附的O和CO,发现CO 2在化学吸附中具有大的捕获概率,以及表面声子的大量能量损失。发现晶格和动态转向效应与已被观察到的直接解离化学吸附的甲烷和水的化学吸附完全不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号