首页> 外文学位 >Kinetics and dynamics of gas-surface interactions: Mechanisms of dissociative chemisorption and the role of molecular intermediates.
【24h】

Kinetics and dynamics of gas-surface interactions: Mechanisms of dissociative chemisorption and the role of molecular intermediates.

机译:气体-表面相互作用的动力学和动力学:解离化学吸附的机理和分子中间体的作用。

获取原文
获取原文并翻译 | 示例

摘要

The dissociative chemisorption of a molecule on a surface is a primary step inherent to many heterogeneous catalytic processes. Yet, models of surface chemical processes at the molecular level remain rather simplistic. Surface science, and in particular supersonic molecular beam experiments, offer promise for a more detailed understanding of the mechanisms underlying these processes.;This dissertation presents work employing molecular beam techniques for the study of the initial (in the limit of zero coverage) dissociative chemisorption of gas molecules on single-crystalline metal surfaces. In particular, studies with two systems, nitric oxide and oxygen on the (111) face of iridium, that challenge traditional models for the adsorption and dissociation of gas molecules on surfaces are presented. Conventional mechanisms of dissociative chemisorption include a trapping-mediated mechanism (a molecule "traps" as a physically adsorbed species, a precursor to dissociation) and a direct dissociation mechanism (a molecule dissociates immediately upon impact with the surface and with no prior accommodation into a molecular surface state). Recent studies have suggested that molecularly chemisorbed species may play a role in this process and that an additional type of direct mechanism may dominate--direct population of a molecularly chemisorbed species (direct molecular chemisorption) with subsequent dissociation. Moreover, the isolation and observation of such species has provided additional support for this mechanism.;Evidence for such a mechanism in the interaction of nitric oxide and oxygen with Ir (111) is presented with measurements of the initial adsorption probability as a function of incident kinetic energy, surface temperature, and angle of incidence between the molecular beam and sample normal. Additionally, a vibrational spectroscopic technique, electron energy loss spectroscopy (EELS), is used as a means of probing the chemical nature of surface states as a function of incident molecule kinetic energy. Indeed, these measurements demonstrate the first vibrational spectroscopic evidence of molecularly chemisorbed intermediates accessed with kinetic energies above 1 eV. Hence, convincing evidence for direct molecular chemisorption mechanisms is provided in these studies. Such mechanisms are likely general for the interaction of many gas-surface systems.
机译:分子在表面上的解离化学吸附是许多异质催化过程固有的第一步。但是,在分子水平上的表面化学过程模型仍然相当简单。表面科学,尤其是超音速分子束实验,为更深入地理解这些过程的机理提供了希望。本论文介绍了利用分子束技术研究初始(在零覆盖范围内)解离化学吸附的工作。单晶金属表面上的气体分子分布。尤其是,提出了对铱(111)面上的一氧化氮和氧这两个系统的研究,这些研究对传统模型对表面上气体分子的吸附和解离提出了挑战。解离化学吸附的常规机制包括捕获介导的机制(分子“捕获”为物理吸附的物种,解离的前体)和直接解离机制(分子在与表面碰撞后立即解离,而没有事先容纳在分子中)。分子表面状态)。最近的研究表明,分子化学吸附的物种可能在此过程中起作用,并且另一种直接机制可能起主导作用-分子化学吸附的物种的直接种群(直接分子化学吸附)随后解离。此外,对此类物质的分离和观察为该机理提供了额外的支持。;这种机理在一氧化氮和氧气与Ir(111)相互作用中的证据是通过测量初始吸附概率随入射的变化而给出的动能,表面温度以及分子束与样品法线之间的入射角。另外,振动光谱技术,电子能量损失光谱(EELS),被用作探测表面状态的化学性质作为入射分子动能的函数的手段。的确,这些测量结果证明了分子化学吸附的中间体的动能高于1 eV的第一个振动光谱学证据。因此,在这些研究中提供了直接分子化学吸附机理的令人信服的证据。对于许多气体表面系统的相互作用,这种机制可能是通用的。

著录项

  • 作者

    Davis, John Edward.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号