首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Molecular Mechanisms Thermodynamics and Dissociation Kinetics of Knob-Hole Interactions in Fibrin
【2h】

Molecular Mechanisms Thermodynamics and Dissociation Kinetics of Knob-Hole Interactions in Fibrin

机译:纤维蛋白中的旋钮-孔相互作用的分子机理热力学和解离动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs ‘A’ and ‘B’ in the central nodule of fibrin monomer to complementary holes ‘a’ and ‘b’ in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob ‘A’ mimetic) and GHRP (knob ‘B’ mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5–7) and temperature (T = 25–37 °C). There were similar structural changes in holes ‘a’ and ‘b’ during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an “all-or-none” transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.
机译:血纤蛋白和血栓的主要结构蛋白血纤蛋白的聚合是通过血纤蛋白单体中心结节中的纽结“ A”和“ B”与γ-和β-中互补孔“ a”和“ b”的结合而发生的。分别是另一种单体的结核。我们使用与合成肽GPRP(旋钮'A'模拟)和GHRP(旋钮'复合)的纤维蛋白(原)片段D的结构模型的分子动力学模拟,在变化的溶液条件下表征了A:a和B:b旋钮孔相互作用。 B')。 A:a和B:b旋钮孔配合物的强度大致相等,随拉力而降低;然而,解离动力学对酸度(pH 5-7)和温度(T = 25-37°C)的变化敏感。在强制分离旋钮孔配合物期间,孔“ a”和“ b”具有类似的结构变化:环I伸长,内部区域伸展以及活动瓣移位。旋钮-孔相互作用的破坏不是“全有或全无”的转变,因为它是通过具有或没有中间状态的不同的两步或单步途径发生的。在pH 7时,旋钮孔键比在pH 5时更牢固,更紧密且更脆。与在pH 7时,A:旋钮孔键相比,B:b旋钮孔键更弱,更松散,更柔顺,但令人惊讶的是,在高温(T = 37°C)时,与T = 25°C相比,由于螺旋向螺旋过渡,旋钮孔键更强,更弱,而不是较弱。在循环中,这有助于稳定键。这些结果提供了详细的定性和定量特征,这些特征是纤维蛋白聚合反应中最重要的非共价相互作用的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号