...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Reactive Molecular Dynamics Simulations to Investigate the Shock Response of Liquid Nitromethane
【24h】

Reactive Molecular Dynamics Simulations to Investigate the Shock Response of Liquid Nitromethane

机译:反应性分子动力学模拟,研究液体硝基甲烷的冲击响应

获取原文
获取原文并翻译 | 示例

摘要

We use molecular dynamics (MD) simulations with the ReaxFF reactive force field to investigate the thermomechanical, chemical, and spectroscopic response of nitromethane (NM) to shock loading. We simulate shocks using the Hugoniostat technique and use four different parametrizations of ReaxFF to assess the sensitivity of the results with respect to the force field. The predicted shock states, for both the unreacted and reacted materials, are in good agreement with experiments, and two of the force fields capture the increase in shock velocity due to exothermic reactions in excellent agreement with experiments. The predicted detonation velocities with these two force fields are also in good agreement with experiments, and the differences in predicted values are linked to the differences in the reaction products. Across all force fields, NM decomposes predominantly via bimolecular reactions and the formation of nitrosomethane (CH3NO) is found as a dominant initiation pathway. We elucidate the mechanisms of secondary reactions leading to stable products, whose predicted populations with all four descriptions are in good agreement with experiments. We also calculated the time-resolved spectra from the trajectories during the shock processes to help correlate the underlying reaction mechanisms with spectral features and enable a one-to-one comparison with laser-driven shock experiments. This study demonstrates the potential of reactive molecular dynamics to describe the physics and chemistry of high-energy density materials under shock loading and complement experimental efforts to derive a definite, validated understanding.
机译:我们使用与Reaxff反应力领域的分子动力学(MD)模拟,以研究硝基甲烷(NM)的热机械,化学品和光谱响应冲击载荷。我们使用Hugoniostat技术模拟冲击,并使用四种不同的Reaxff参数化来评估结果相对于力场的敏感性。对于未反应和反应的材料,预测的冲击状态与实验吻合良好,并且两种力场由于与实验的优秀协议中的放热反应而捕获减震速度的增加。具有这两个力场的预测的爆炸速度也与实验良好,预测值的差异与反应产物的差异有关。在所有力领域,NM主要通过双分子反应分解,并发现亚硝基甲烷(CH 3 NO)的形成作为显性引发途径。我们阐明导致稳定产品的二次反应的机制,其预测群体所有四个描述与实验吻合良好。我们还在休克过程中计算了来自轨迹的时间分辨率光谱,以帮助将底层反应机制与光谱特征相关联,并使与激光驱动的冲击实验一对一的比较。本研究表明,反应性分子动力学的潜力描述了在休克负载下描述了高能量密度材料的物理和化学,并补充了实验努力,从而获得了明确的验证的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号