首页> 外文会议>International Symposium on Shock Waves; 20040711-16; Beijing(CN) >Ab initio molecular dynamics simulations of nitromethane under shock initiation conditions
【24h】

Ab initio molecular dynamics simulations of nitromethane under shock initiation conditions

机译:冲击引发条件下硝基甲烷的从头算分子动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

Multimolecular collisions were employed as a simplified model to study shock-induced dissocia-tion in homogeneous liquid nitromethane using first principles Car-Parrinello molecular dynamics simulations within the Kohn-Sham scheme at the density functional theory level. Simulations were carried out for a variety of collision orientations and collision velocities. The critical velocity for successful dissociation was found to be 11-12 km/s under the impact of a single molecule on multiple molecules and between 8 and 10 km/s under the impact of multiple molecules on multiple molecules. The neighbouring molecules in the current multimolecular collision simulations act as a trap to confine the recoiling fragments produced during the initial impact, thereby enabling them to recombine to form intact nitromethane molecules. This leads to higher threshold collision velocities than found previously in bimolecular collision simulations (i.e., 7.0-10.5 km/s for collision orientations investigated). Although our rationale for extending the bimolecular collision simulations to multimolecular collision simulations was to account for potential collision-induced reactions involving multiple molecules, the current CPMD simulations indicate that this only occurs at very high incident collision velocities. In accord with previous bimolecular collision simulations, C-N bond cleavage is the primary mechanism of nitromethane dissociation in the multimolecular collision simulations at the threshold collision velocities. An alternative C-H bond scission fragmentation mechanism was observed only in high collision velocity simulations. The threshold collision velocities determined from the bimolecular and multimolecular collision simulations are much higher than the average atomic velocities expected at the detonation shock front of nitromethane, suggesting that molecular dissociation is likely effected with thermalization after the shock front passes. However, to draw a firm conclusion, more complex multimolecular collision scenarios should be investigated in an effort to more accurately model the stochastic nature of shock front propagation through the bulk liquid.
机译:多分子碰撞被用作简化模型,以在密度泛函理论水平上使用Kohn-Sham方案内的第一原理Car-Parrinello分子动力学模拟研究均相液态硝基甲烷中的冲击诱导的离解。针对各种碰撞方向和碰撞速度进行了仿真。发现在单个分子对多个分子的影响下,成功解离的临界速度为11-12 km / s,在多个分子对多个分子的影响下为8至10 km / s。当前多分子碰撞模拟中的相邻分子充当陷阱,以限制在初始撞击过程中产生的反冲碎片,从而使它们能够重组形成完整的硝基甲烷分子。这导致了比以前在双分子碰撞模拟中发现的阈值碰撞速度更高的阈值碰撞速度(即,对于所研究的碰撞方向为7.0-10.5 km / s)。尽管我们将双分子碰撞模拟扩展到多分子碰撞模拟的理由是要考虑涉及多个分子的潜在碰撞诱导反应,但当前的CPMD模拟表明这仅在非常高的入射碰撞速度下发生。与以前的双分子碰撞模拟一致,在阈值碰撞速度下,多分子碰撞模拟中C-N键断裂是硝基甲烷分解的主要机理。仅在高碰撞速度模拟中观察到了另一种C-H键断裂断裂的机制。由双分子和多分子碰撞模拟确定的阈值碰撞速度远高于在硝基甲烷的爆震激波前沿所预期的平均原子速度,这表明分子解离很可能在激波前沿通过后发生热化作用。但是,要得出一个明确的结论,应研究更复杂的多分子碰撞情况,以更准确地模拟通过大量液体传播的激波锋的随机性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号