首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Evolution of Atomistic Topology at H2O/GaSb(100) Interface under Ambient Conditions and GaSb Surface Passivation
【24h】

Evolution of Atomistic Topology at H2O/GaSb(100) Interface under Ambient Conditions and GaSb Surface Passivation

机译:环境条件下H2O / GASB(100)界面在H2O / GASB(100)界面的演变和喘气面钝化

获取原文
获取原文并翻译 | 示例
           

摘要

Gallium antimonide (GaSb) has emerged as a promising light absorber in solar cells and optoelectronics because of its high hot-carrier mobility. Here, the interfacial physiochemical process of H2O/GaSb(100) under a series of isothermal and isobaric conditions was investigated using ambient pressure X-ray photoelectron spectroscopy. At room temperature and elevated H2O vapor pressures, we observed the dissociative adsorption of H2O onto the GaSb(100) surface and the preferential formation of (HO)Ga-Sb(H) (atop) and Ga-OI(H)-Ga-Sb(H) (bridge) over (H)Ga-O(H)-Sb(H) (bridge), that is, the GaSb(100) surface was covered by hydroxyls instead of oxides. The oxyhydroxylation of the GaSb(100) surface was significantly enhanced at elevated temperatures, coupled with gradual desorption of surface Sb from 373 to 573 K in the form of SbH3. Meanwhile, large-scale oxyhydroxylation of GaSb(100) surface at 573 K was captured by on-line mass spectrometry, where the increment in H2O consumption and the generation of H-2 were observed. When the temperature reaches 673 K and above, the surface oxyhydroxides formed under lower temperatures desorbs quickly, leaving behind a Sb-terminated GaSb surface and preventing any further H2O dissociative adsorption. The combinative isothermal and isobaric study offers a full picture of the H-2 O/GaSb(100) interface in terms of the atomistic topological and structural evolutions under various H2O pressures and temperatures. The present study provides a possible venue for low-cost surface passivation of GaSb and III-V semiconductor-based electronic devices.
机译:由于其高热载体迁移率,镓锑(Gasb)作为太阳能电池和光电子的有前途的光吸收器出现。这里,使用环境压力X射线光电子谱研究,研究了在一系列等温和异级条件下的H 2 O / Gasb(100)的界面理化过程。在室温下,H2O蒸汽压力升高,我们观察到H 2 O的离防吸附到Gasb(100)表面和(HO)Ga-Sb(H)(atop)和Ga-oi(h) - ga-的优先形成Sb(H)(桥)超过(H)Ga-O(H)-β(H)(H)(桥),即,Gasb(100)表面被羟基覆盖而不是氧化物。升高的温度下,Gasb(100)表面的氧化氧化显着增强,耦合在SBH3形式的373至573k的表面Sb的逐渐解吸。同时,通过在线质谱法捕获573k的Gasb(100)表面的大规模氧化氧化,观察到H2O消耗量的增量和H-2的产生。当温度达到673 k及以上时,表面羟基氧化物在较低的温度下迅速地形成,留下了SB封端的气体表面并防止进一步的H2O离归吸附。组合等温和异烟研究在各种H2O压力和温度下的原子拓扑结构和结构演变方面提供了H-2 O / Gasb(100)界面的完整界面。本研究提供了一种可能的气体和III-V半导体电子设备的低成本表面钝化场所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号