...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Identification of Exciton-Exciton Annihilation in Hematite Thin Films
【24h】

Identification of Exciton-Exciton Annihilation in Hematite Thin Films

机译:赤铁矿薄膜激子激灭灭绝的鉴定

获取原文
获取原文并翻译 | 示例

摘要

Hematite, a common type of iron oxide, is a promising material for solar technologies because of its small band gap that allows for solar radiation absorption in the visible region, low toxicity in aqueous solutions, easy synthesis, and natural abundance. However, fast electron-hole recombination has been hampering full applicability of hematite in solar technologies. In this study, we used visible femtosecond transient absorption spectroscopy to investigate the excited-state decay and electron-hole recombination dynamics of nanostructured hematite thin films. By varying the pump excitation fluence and performing global and target data analysis, we identified the presence of nonlinear decay processes during the initial picosecond after photoexcitation, which have a non-negligible contribution at pump fluences of >similar to 1 mJ/(pulse.cm(2)). Calculations show exciton-exciton annihilation to be the dominant nonlinear process, with an average rate constant of 7.09 X 10(-9) cm(3) s(-1). Annihilation calculations also allowed us to estimate the annihilation radius to be 2.3 nm, thus explaining the rapid exciton-exciton annihilation in the immediate aftermath of photoexcitation. Probe wavelength-dependent decay dynamics points to excitation energy redistribution and involvement of traps in the recombination dynamics. We finally present a kinetic model, verified by performing target data analysis, showing the rates and channels of the dominant processes involved with electron-hole recombination upon relatively high excitation rates. The extremely fast electron-hole recombination process in hematite is one of the main reasons hindering the full applicability of the material in solar water splitting. Measures to limit these ultrafast recombination processes should, therefore, be incorporated into device fabrication and preparation to further improve the material.
机译:赤铁矿是一种常见的氧化铁类型,是太阳能技术的有希望的材料,因为它的小带隙,允许可见区域中的太阳辐射吸收,水溶液中的低毒性,易于合成和天然丰富。然而,快速电子孔重组一直阻碍了太阳能技术在赤铁矿上的全部适用性。在这项研究中,我们使用了可见的飞秒瞬态吸收光谱,研究了纳米结构赤铁矿薄膜的激发态衰减和电子空穴重组动态。通过改变泵激发频率和进行全局和目标数据分析,我们确定了在光透镜后初始皮秒内的非线性衰变过程的存在,这在泵流量的泵流量的贡献中具有类似于1 MJ /(Pulse.cm (2))。计算显示激子激子湮灭是主要的非线性过程,平均速率常数为7.09×10(-9)cm(3)s(-1)。湮灭计算也允许我们估计湮灭半径为2.3 nm,从而在光通透明的立即后,解释了快速的激子激子湮灭。探针从波长依赖性衰减动力学指向激发能量再分配和陷阱中的捕集在重组动力学中的累积。我们终于呈现了一种动力学模型,通过执行目标数据分析来验证,显示在相对高的激发速率上的电子空穴重组所涉及的主导过程的速率和通道。赤铁矿中极快的电子空穴重组过程是妨碍材料在太阳能水分裂中的完全适用性的主要原因之一。因此,应将这些超快重组过程限制的措施结合到装置制造中并制备以进一步改善材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号