首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Artificial Neural Network Discrimination for Parameter Estimation and Optimal Product Design of Thin Films Manufactured by Chemical Vapor Deposition
【24h】

Artificial Neural Network Discrimination for Parameter Estimation and Optimal Product Design of Thin Films Manufactured by Chemical Vapor Deposition

机译:化学气相沉积制造的薄膜参数估计的人工神经网络辨别

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Industrial production of valuable chemical products often involves the manipulation of phenomena evolving at different temporal and spatial scales. Product properties can be captured accurately using computationally expensive stochastic multiscale models that explicitly consider the feedbacks between different scales. However, product design quality is often tampered by uncertainties affecting process operation. In this work, we used artificial neural networks (ANNs) to estimate an uncertain parameter, accurately predict product properties under uncertainty, and achieve orders-of-magnitude computational savings of a multiscale model of thin film formation by chemical vapor deposition. ANNs were trained using multiple realizations of the uncertain parameter to capture the behavior of the thin film's two key microscale properties: roughness and growth rate. Next, mean square error and maximum likelihood estimation were used for parameter estimation and to find the ANN that could generate the closest predictions to the real-time measurements collected from the process in the presence of uncertainty. The chosen ANNs were employed to seek for the optimal operating conditions to enable the fabrication process to meet product quality specifications. ANNs are a promising technique for product property prediction and efficient decision making in the design of optimal operating conditions for chemical processes under uncertainty.
机译:工业生产有价值的化学产品往往涉及在不同时间和空间尺度上操作现象的操纵。可以使用计算昂贵的随机多尺度模型准确地捕获产品属性,该模型明确地考虑不同尺度之间的反馈。然而,产品设计质量通常被影响过程操作的不确定性篡改。在这项工作中,我们使用人工神经网络(人工神经网络)来估计不确定参数,准确地在不确定性下预测产品特性,并且实现通过化学气相沉积形成薄膜的多尺度模型的订单数量级的计算节省。使用不确定参数的多种实现培训ANNS培训,以捕获薄膜的两个关键微观特性的行为:粗糙度和增长率。接下来,使用均方误差和最大似然估计用于参数估计,并找到可以生成与在存在不确定性的过程中收集的实时测量的最接近预测的ANN。所选的ANNS用于寻求最佳操作条件,以使制造过程能够满足产品质量规格。 ANNS是在不确定度下的化学过程的最佳操作条件设计中的产品性能预测和高效决策的有希望的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号