首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Bringing Molecular Dynamics and Ion-Mobility Spectrometry Closer Together: Shape Correlations, Structure-Based Predictors, and Dissociation
【24h】

Bringing Molecular Dynamics and Ion-Mobility Spectrometry Closer Together: Shape Correlations, Structure-Based Predictors, and Dissociation

机译:将分子动力学和离子迁移率光谱测定在一起:形状相关,基于结构的预测器和解离

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Unfolding of proteins gives detailed information about their structure and energetics and can be probed as a response to a change of experimental conditions. Ion mobility coupled to native mass spectrometry is a gas-phase technique that can observe such unfolding in the gas phase by monitoring the collision cross section (CCS) after applying an activation, for example, by collisions (collision-induced unfolding, CIU). The structural assignments needed to interpret the experiments can profit from dedicated modeling strategies. While predictions of ion-mobility data for well-defined and structurally characterized systems is straightforward, systematic free-energy calculations or biased molecular dynamics simulations that employ IMS data are still limited. The methods with which CCS values are calculated so far do not allow for analytical gradients needed in biased molecular dynamics (MD), and further, explicit CCS calculations still can pose computational bottleneck-when integrated into MD-bioinformatics workflows. These limitations motivate one to revisit known correlations of the CCS with the aim to find computationally cheap and versatile but still at least semiquantitative descriptions of the CCS by pure structural descriptors. We have therefore investigated the correlation of CCS with the key structural parameter often used in computational unfolding studies-the gyration radius-for several small monomeric and dimeric proteins. We work out the challenges and caveats of the combinations of the configurational sampling method and the CCS-calculation algorithm. The correlations were found to be sensitive to the generation conditions and additionally to the system topology. To reduce the amount of fitting to be undertaken, we devise a simple structural model for the CCS that shares some commonalities with the hard-sphere model and the projection algorithm but is designed to take unfolding into account. With this model, we suggest a two-point interpolating function rather than fitting a large data set, at only little deterioration of the predictive power. We further proceed to a model with composition and structure dependence that builds only upon the gyration radius and the chemical formula to apply the found CCS scaling behavior-the scaled macroscopic sphere (sMS) predictor. We demonstrate its applicability to describe unfolding and also its transferability for a larger set of structures from the RSCPDB. As we have found for the dimeric systems, that shape correlations with one global descriptor qualitatively break down, we finally suggest a recipe to switch between global and fragment-based CCS prediction, that takes up the ideas of coarse-graining protein complexes. The presented models and approaches might provide a basis to boost the integration of structural modeling with multistage IMS experiments, especially in the field of large-scale bioinformatics or "on-the-fly" biasing of MD, where computational efficiency is critical.
机译:蛋白质的展开提供了有关其结构和能量学的详细信息,并且可以探测对实验条件的变化的反应。耦合到天然质谱的离子迁移率是通过监测激活横截面(CCS)在施加例如碰撞(碰撞诱导的展开,CIU)之后通过监测碰撞横截面(CC)来观察气相中的气相技术。解释实验所需的结构分配可以从专用的建模策略中获利。虽然用于定义明确和结构表征系统的离子迁移率数据的预测是简单的,系统的自由能计算或偏置IMS数据的偏置分子动力学模拟仍然有限。迄今为止计算CCS值的方法不允许偏置分子动态(MD)所需的分析梯度,并且进一步地,显式CCS计算仍然可以占用计算瓶颈 - 当集成到MD-Bioinformatics工作流程中时。这些限制激励了一个重新开始CCS的已知相关性,目的是通过纯结构描述符找到计算廉价和多功能,但仍然至少是CCS的半定义描述。因此,我们研究了CCS与经常用于计算展开研究中使用的关键结构参数的相关性 - 用于几种小单体和二聚体蛋白的循环半径。我们制定了配置采样方法和CCS计算算法的组合的挑战和警告。发现相关性对生成条件敏感,并另外到系统拓扑。为了减少要进行的装配量,我们为CCS设计了一个简单的结构模型,该模型与硬球模型和投影算法共享一些共同,但旨在考虑展开。通过这种模型,我们建议一个两点内插功能而不是拟合大数据集,只能劣化预测功率。我们进一步前进到一个模型,其中构成和结构依赖性仅在旋转半径和化学式上构建以应用发现的CCS缩放行为 - 缩放的宏观球(SMS)预测器。我们展示其适用性来描述展开以及其来自RSCPDB的较大结构集的可转移性。正如我们已经找到了二聚体系统,一个全球性描述符形状相关定性打破,我们最终建议全局和基于片段的CCS预测之间的配方开关,即占用了粗粒化蛋白质复合物的想法。所提出的模型和方法可以提供促进结构建模与多级IMS实验的集成的基础,尤其是在大规模生物信息学或“现行”MD的偏置领域,计算效率至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号