首页> 外文期刊>The Journal of Chemical Physics >Exploring the driving forces behind the structural assembly of biphenylthiolates on Au(111)
【24h】

Exploring the driving forces behind the structural assembly of biphenylthiolates on Au(111)

机译:在Au(111)上探索双苯硫酸盐结构组件后面的驱动力

获取原文
获取原文并翻译 | 示例
           

摘要

In this contribution, we use dispersion-corrected density functional theory to study inter-and intramolecular interactions in a prototypical self-assembled monolayer (SAM) consisting of biphenylthiolates bonded to Au(111) via thiolate groups. The goal is to identify the nature of the interactions that drive the monolayer into a specific conformation. Particular focus is laid on sampling realistic structures rather than high symmetry model configurations. This is achieved by studying conceptually different local minimum structures of the SAM that are obtained via exploring the potential energy surface from systematically varied starting geometries. The six obtained packing motifs differ in the relative arrangement of the two molecules in the unit cell (co-planar versus herringbone) and in the intramolecular configuration (twisted versus planar rings). We find that van der Waals interactions within the organic adsorbate and between the adsorbate and substrate are the main reason that these molecular assemblies can form stable structures at all. The van der Waals interactions are, however, very similar for all observed motifs; by analyzing various types of interactions in the course of three notional SAM-formation steps, we find that the main driving force stabilizing the actual global minimum structure originates from electrostatic interactions between the molecules. Published by AIP Publishing.
机译:在这一贡献中,我们使用色散校正的密度函数理论研究由硫醇酸酯基团键合与Au(111)键合的联苯硫氨酸盐组成的原型自组装单层(SAM)中的互连和分子间相互作用。目标是识别将单层传递成特定构象的相互作用的性质。特别焦点奠定了采样现实结构而不是高对称模型配置。这是通过研究通过从系统变化的起始几何形状探索潜在的能量表面获得的SAM的概念上不同的局部最小结构来实现的。六个获得的包装基序在单位细胞(共面与人字形)和分子内构造中的两个分子的相对布置不同(扭曲与平面环)。我们发现van der Wa种在有机吸附物和吸附物和基材之间的相互作用是这些分子组件可以形成稳定的结构的主要原因。然而,Van der Wa种相互作用对所有观察到的图案非常相似;通过在三个名义的SAM形成步骤中分析各种类型的相互作用,我们发现稳定实际全局最小结构的主要驱动力来自分子之间的静电相互作用。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号