首页> 外文期刊>Physics of plasmas >Experimental study of energy transfer in double shell implosions
【24h】

Experimental study of energy transfer in double shell implosions

机译:双壳体内灌注中能量转移的实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. The measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22%+/- 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27%+/- 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to similar to 5%, without inclusion of higher order 2D and 3D effects. Published under license by AIP Publishing.
机译:目标制造的进步使双壳胶囊内膜成为研究燃烧融合等离子体的可行平台。双壳胶囊的核心是高Z(例如,Au)金属推动器,通过通过辐射捕获并在降低的速度下压缩均匀的燃料体积来通过减少辐射损耗来接近体积燃烧制度。双壳内爆炸依赖于从外壳的X射线吸收开始的一系列能量转移过程,然后通过将动能转移到内壳,最后将动能转化为燃料内能量。我们在双壳中向不同层进行模拟和实验结果。我们还提供了NIF圆柱形HOHLRAUM双壳平台的开发的细节,包括成像壳设计,其具有中间Z内壳,所以将内壳形状和具有电流2DCONA平台能力的轨迹进行成像。我们使用来自一系列代理目标的轨迹测量来检查壳层之间的1D能量转移;该系列通过层构建到完整的双壳层,隔离能量转移过程的每个步骤的物理。测量的能量转移到泡沫垫和内壳表明我们的辐射 - 流体动力学仿真捕获了大多数相关的碰撞物理学。通过1 MJ激光驱动,实验数据表明,22%+ / - 3%的烧蚀剂动能耦合到内壳KE中,而我们的XRAGE模拟中的27%+ / - 2%耦合。因此,我们的XRAGE仿真匹配了实验能量转移到类似于5%,而无需包含高阶2D和3D效果。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号