...
首页> 外文期刊>Physical review, B >Accurate and precise ab initio anharmonic free-energy calculations for metallic crystals: Application to hcp Fe at high temperature and pressure
【24h】

Accurate and precise ab initio anharmonic free-energy calculations for metallic crystals: Application to hcp Fe at high temperature and pressure

机译:用于金属晶体的准确和精确的AB Initio Anharmonic自由能量计算:在高温和压力下应用于HCP Fe

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A framework for computing the anharmonic free energy (FE) of metallic crystals using Born-Oppenheimer ab initio molecular dynamics (AIMD) simulation, with unprecedented efficiency, is introduced and demonstrated for the hcp phase of iron at extreme conditions (up to approximate to 290 GPa and 5000 K). The advances underlying this work are: (1) A recently introduced harmonically-mapped averaging temperature integration (HMA-TI) method that reduces the computational cost by order(s) of magnitude compared to the conventional TI approach. The TI path starts from zero Kelvin, where it assumes the behavior is given exactly by a harmonic treatment; this feature restricts application to systems that have no imaginary phonons in this limit. (2) A Langevin thermostat with the HMA-TI method that allows the use of a relatively large MD time step (4 fs, which is about eight times larger than the size needed for the Andersen thermostat) without loss of accuracy. (3) AIMD sampling is accelerated by using density functional theory (DFT) with a low-level parameter set, then the measured quantities of selected configurations are robustly reweighted to a higher level of DFT. This introduces a speedup of about 20-30x compared to directly simulating the accurate system. (4a) The temperature (T) dependence of the hcp equilibrium shape (i.e., c/a axial ratio) is determined (including anharmonicity), with uncertainty less than +/- 0.001. (4b) Electronic excitation is included through Mermin's finite-temperature extension of the T = 0 K DFT. A simple FE perturbation method is introduced to handle the difficulty associated with applying the TI method with a T-dependent geometry and (due to electronic excitation) potential-energy surface. (5) The FE in the thermodynamic limit is attained through extrapolation of only the (computationally inexpensive) quasiharmonic FE, because the anharmonic FE contribution has negligible finite-size effects. All methods introduced here do not affect the AIMD sampling-results are obtained through post-processing-so established AIMD codes can be employed without modification. Analytical formulas fitted to the results for the variation of the equilibrium c/a ratio and FE components with T are provided. Notably, effects of magnetic excitations are not included and may yet prove important to the overall FE; if so, it is plausible that such contributions can be added perturbatively to the FE values reported here. Notwithstanding these considerations, FE values are obtained with an estimated accuracy and precision of 2 meV/atom, suggesting that the capability to compute the phase diagram of iron at Earth's inner core conditions is within reach.
机译:使用前所未有的效率计算使用出生的oppenheimer AB INITIO分子动力学(AIMD)模拟的金属晶体的无谐波自由能量(Fe)的框架,并在极端条件下为铁的HCP阶段(最高达到290) GPA和5000 k)。这项工作的基础是:(1)最近引入了与传统Ti方法相比降低了按幅度的顺序降低了计算成本的谐波平均温度集成度(HMA-TI)方法。 TI路径从Zero Kelvin开始,在那里它假设行为由谐波处理完全相同;此功能将应用程序限制在此限制中没有虚物声子的系统。 (2)具有HMA-Ti方法的Langevin恒温器,允许使用相对大的MD时间步骤(4 fs,这比Andersen恒温器所需的尺寸大约八倍)而不会损失精度。 (3)通过使用低级参数集使用密度泛函理论(DFT)加速了AIMAD采样,然后将测量的所选配置稳健地重新重新重复于更高水平的DFT。与直接模拟精确的系统相比,这引入了大约20-30倍的加速。 (4A)HCP平衡形状(即,C / A轴向比)的温度(T)依赖性(包括anharmonicity),不确定度小于+/- 0.001。 (4B)通过Mermin的T = 0 K DFT的有限温度延伸包括电子激发。引入简单的FE扰动方法以处理与应用TI方法与T依赖性几何形状和(由于电子激发)电位 - 能量表面相关的难题。 (5)通过仅推断(计算廉价)Quasihonoonic Fe的外推实现热力学限制的Fe,因为Anharmonic Fe贡献具有可忽略的有限效果。这里介绍的所有方法不影响AIMD采样 - 通过后处理获得的结果 - 所以可以在没有修改的情况下采用建立的AIMD代码。提供了适用于均衡C / A比和Fe组分的变化结果的分析公式。值得注意的是,不包括磁激励的影响,并且可能对整个FE提供重要意义;如果是,则可以合理地可以扰乱此类贡献,从此处报告的FE值进行扰乱。尽管有这些考虑因素,但以估计的准确性和精度为2 MeV /原子获得Fe值,这表明在地球内核条件下计算铁的相位图的能力在覆盖范围内。

著录项

  • 来源
    《Physical review, B》 |2017年第1期|共13页
  • 作者单位

    Univ Buffalo State Univ New York Dept Chem &

    Biol Engn Buffalo NY 14260 USA;

    Univ Buffalo State Univ New York Dept Chem &

    Biol Engn Buffalo NY 14260 USA;

    Univ Buffalo State Univ New York Dept Chem Buffalo NY 14260 USA;

    Univ Buffalo State Univ New York Dept Chem &

    Biol Engn Buffalo NY 14260 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号